Skip to main content
Log in

Titanium-based matrix composites reinforced with particulate, microstructure, and mechanical properties using spark plasma sintering technique: a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The interest for lightweight and high-temperature materials for critical innovative applications is expanding in numerous modern industries. Reinforcing ceramic particles with micro/nano-scale sizes into titanium alloys is distinguished, thereby increasing the hardness and wear resistance. Alternatively, reduction in particles sizes also helps in increasing the strength, ductility, and creep resistance of the reinforced materials. Nano-ceramic has significant improvement in mechanical properties of a material, which makes it practically a good reinforcement in metal composites. Recent advancement in nanotechnology area demands innovative improvement in metal matrix composite for critical and functional applications. The effects of micro/nanomaterial dispersion in the metal matrix composite are spoken about and the formation of unexpected interfacial reaction on these properties. Powder metallurgy is a process where powder materials are being compacted or sintered in the furnace with the perspective of accomplishing higher densities. Spark plasma sintering techniques have a favorable condition over other sintering methods since it tends to decrease the sintering time with high temperatures, attaining higher densities, microstructural evolution, and the tendency to improve the mechanical properties of the material. This review focuses on the fabrication and mechanical properties of titanium alloy strengthening with micro/nano-ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar BA, Murugan N (2012) Metallurgical and mechanical characterization of stir cast AA6061-T6–AlNp composite. Mater Des 40:52–58

    Article  Google Scholar 

  2. Bakshi S, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites-a review. Int Mater Rev 55(1):41–64

    Article  Google Scholar 

  3. Falodun OE, Obadele BA, Oke SR, Ige OO, Olubambi PA, Lethabane ML, Bhero SW (2018) Influence of spark plasma sintering on microstructure and wear behaviour of Ti-6Al-4V reinforced with nanosized TiN. Trans Nonferrous Metals Soc China 28(1):47–54

    Article  Google Scholar 

  4. Pagounis E, Lindroos V (1998) Processing and properties of particulate reinforced steel matrix composites. Mater Sci Eng A 246(1–2):221–234

    Article  Google Scholar 

  5. Siegel RW (1993) Synthesis and properties of nanophase materials. Mater Sci Eng A 168(2):189–197

    Article  MathSciNet  Google Scholar 

  6. Suryanarayana C, Koch CC (2000) Nanocrystalline materials – current research and future directions. Hyperfine Interact 130(1):5–44. https://doi.org/10.1023/a:1011026900989

    Article  Google Scholar 

  7. Reddy R (2003) Processing of nanoscale materials. Rev Adv Mater Sci 5:121–133

    Google Scholar 

  8. Wang L, Zhang J, Jiang W (2013) Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering. Int J Refract Met Hard Mater 39:103–112

    Article  Google Scholar 

  9. German RM (1996) Sintering theory and practice. Sol-Terr Phys (Solnechno-zemnaya fizika) 568

  10. Basu B, Balani K (2011) Sintering of ceramics. Advanced structural ceramics, pp 76–104

  11. Mukhopadhyay A, Basu B, Bakshi SD, Mishra SK (2007) Pressureless sintering of ZrO2–ZrB2 composites: microstructure and properties. Int J Refract Met Hard Mater 25(2):179–188

    Article  Google Scholar 

  12. Golla BR, Basu B (2014) Spark plasma sintering of nanoceramic composites

  13. Obadele BA, Falodun OE, Oke SR, Olubambi PA (2018) Spark plasma sintering behaviour of commercially pure titanium micro-alloyed with Ta-Ru. Part Sci Technol 1–7

  14. Niihara K, Suzuki Y (1999) Strong monolithic and composite MoSi2 materials by nanostructure design. Mater Sci Eng A 261(1–2):6–15

    Article  Google Scholar 

  15. Huang L-J, Cui X-P, Lin G, Yu F (2012) Effects of rolling deformation on microstructure and mechanical properties of network structured TiBw/Ti composites. Trans Nonferrous Metals Soc China 22:s79–s83

    Article  Google Scholar 

  16. Purazrang K, Kainer K, Mordike B (1991) Fracture toughness behaviour of a magnesium alloy metal-matrix composite produced by the infiltration technique. Composites 22(6):456–462

    Article  Google Scholar 

  17. Tzamtzis S, Barekar N, Babu NH, Patel J, Dhindaw B, Fan Z (2009) Processing of advanced Al/SiC particulate metal matrix composites under intensive shearing–a novel Rheo-process. Compos A: Appl Sci Manuf 40(2):144–151

    Article  Google Scholar 

  18. Miracle D (2005) Metal matrix composites–from science to technological significance. Compos Sci Technol 65(15–16):2526–2540

    Article  Google Scholar 

  19. Suárez M, Fernández-Camacho A, Menéndez JL, Torrecillas R (2013) Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials. InTech

  20. Weston N, Derguti F, Tudball A, Jackson M (2015) Spark plasma sintering of commercial and development titanium alloy powders. J Mater Sci 50(14):4860–4878

    Article  Google Scholar 

  21. Wang Y, Lin J, He Y, Wang Y, Chen G (2008) Microstructures and mechanical properties of Ti–45Al–8.5 Nb–(W, B, Y) alloy by SPS–HIP route. Mater Sci Eng A 489(1):55–61

    Article  Google Scholar 

  22. Couret A, Molénat G, Galy J, Thomas M (2008) Microstructures and mechanical properties of TiAl alloys consolidated by spark plasma sintering. Intermetallics 16(9):1134–1141

    Article  Google Scholar 

  23. Oke SR, Ige OO, Falodun OE, Obadele BA, Shongwe MB, Olubambi PA (2018) Optimization of process parameters for spark plasma sintering of nano structured SAF 2205 composite. J Mater Res Technol 7(2):126–134

    Article  Google Scholar 

  24. Saheb N, Iqbal Z, Khalil A, Hakeem AS, Al Aqeeli N, Laoui T, Al-Qutub A, Kirchner R (2012) Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomater 2012:18

    Article  Google Scholar 

  25. Tokita M (2013) Spark plasma sintering (SPS) method, systems and applications. Handbook of advanced ceramics, pp 1149–1177

  26. Feng H, Zhou Y, Jia D, Meng Q (2005) Rapid synthesis of Ti alloy with B addition by spark plasma sintering. Mater Sci Eng A 390(1–2):344–349

    Article  Google Scholar 

  27. Lee G, Olevsky EA, Maniere C, Maximenko A, Izhvanov O, Back C, McKittrick J (2018) Effect of electric current on densification behavior of conductive ceramic powders consolidated by spark plasma sintering. Acta Mater 144:524–533

    Article  Google Scholar 

  28. Frost HJ, Ashby MF (1982) Deformation mechanism maps: the plasticity and creep of metals and ceramics. Pergamon press

  29. Grosdidier T, Ji G, Bernard F, Gaffet E, Munir ZA, Launois S (2006) Synthesis of bulk FeAl nanostructured materials by HVOF spray forming and spark plasma sintering. Intermetallics 14(10–11):1208–1213

    Article  Google Scholar 

  30. Ji G, Grosdidier T, Bozzolo N, Launois S (2007) The mechanisms of microstructure formation in a nanostructured oxide dispersion strengthened FeAl alloy obtained by spark plasma sintering. Intermetallics 15(2):108–118

    Article  Google Scholar 

  31. Xie S, Li R, Yuan T, Zhang M, Wang M, Wu H, Zeng F (2018) Viscous flow activation energy adaptation by isothermal spark plasma sintering applied with different current mode. Scr Mater 149:125–128. https://doi.org/10.1016/j.scriptamat.2018.02.024

    Article  Google Scholar 

  32. Morita K, Kim B-N, Yoshida H, Hiraga K, Sakka Y (2018) Distribution of carbon contamination in oxide ceramics occurring during spark-plasma-sintering (SPS) processing: II - effect of SPS and loading temperatures. J Eur Ceram Soc 38(6):2596–2604. https://doi.org/10.1016/j.jeurceramsoc.2017.12.004

    Article  Google Scholar 

  33. Zhang Z-H, Liu Z-F, Lu J-F, Shen X-B, Wang F-C, Wang Y-D (2014) The sintering mechanism in spark plasma sintering–proof of the occurrence of spark discharge. Scr Mater 81:56–59

    Article  Google Scholar 

  34. Tang Y, Xue J-X, Zhang G-J, Wang X-G, Xu C-M (2014) Microstructural differences and formation mechanisms of spark plasma sintered ceramics with or without boron nitride wrapping. Scr Mater 75:98–101

    Article  Google Scholar 

  35. Song S-X, Wang Z, Shi G-P (2013) Heating mechanism of spark plasma sintering. Ceram Int 39(2):1393–1396

    Article  Google Scholar 

  36. Nowak S, Perrière L, Dembinski L, Tusseau-Nenez S, Champion Y (2011) Approach of the spark plasma sintering mechanism in Zr57Cu20Al10Ni8Ti5 metallic glass. J Alloys Compd 509(3):1011–1019

    Article  Google Scholar 

  37. Tokita M (1994) Development of third-generation spark-plasma-sintering (SPS) systems. Advanced production process for fine ceramics and functionally gradient materials. Nyu Seramikkusu 7:63–74

    Google Scholar 

  38. Li R, Yuan T, Liu X, Zhou K (2016) Enhanced atomic diffusion of Fe–Al diffusion couple during spark plasma sintering. Scr Mater 110:105–108

    Article  Google Scholar 

  39. Deng S, Li R, Yuan T, Xie S, Zhang M, Zhou K, Cao P (2018) Direct current-enhanced densification kinetics during spark plasma sintering of tungsten powder. Scr Mater 143:25–29

    Article  Google Scholar 

  40. Hanada K, Nakayama N, Mayuzumi M, Sano T (2003) Fabrication of Ti/cluster diamond/TiC in situ composites. J Mater Process Technol 139(1–3):362–367

    Article  Google Scholar 

  41. Novikov N, Maystrenko A, Kushch V, Ivanov S (2006) Quality rating of a metal matrix-diamondcomposite from its thermal conductivity and electric resistance. Mech Compos Mater 42(3):253–262

    Article  Google Scholar 

  42. Miracle D, Donaldson S, Henry S, Moosbrugger C, Anton G, Sanders B, Muldoon K (2001) ASM handbook, vol 21. ASM International Materials Park, OH

    Google Scholar 

  43. Zhang Z, Chen D (2008) Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater Sci Eng A 483:148–152

    Article  Google Scholar 

  44. Zhang Z, Chen D (2006) Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scr Mater 54(7):1321–1326

    Article  Google Scholar 

  45. Sanaty-Zadeh A (2012) Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect. Mater Sci Eng A 531:112–118

    Article  Google Scholar 

  46. Luo P, McDonald D, Xu W, Palanisamy S, Dargusch M, Xia K (2012) A modified Hall–Petch relationship in ultrafine-grained titanium recycled from chips by equal channel angular pressing. Scr Mater 66(10):785–788

    Article  Google Scholar 

  47. Hull D, Bacon DJ (2001) Introduction to dislocations. Butterworth-Heinemann

  48. Witkin D, Lee Z, Rodriguez R, Nutt S, Lavernia E (2003) Al–Mg alloy engineered with bimodal grain size for high strength and increased ductility. Scr Mater 49(4):297–302

    Article  Google Scholar 

  49. Casati R, Vedani M (2014) Metal matrix composites reinforced by nano-particles—a review. Metals 4(1):65–83

    Article  Google Scholar 

  50. Nardone V, Prewo K (1986) On the strength of discontinuous silicon carbide reinforced aluminum composites. Scr Metall 20(1):43–48

    Article  Google Scholar 

  51. Tun KS, Gupta M (2007) Improving mechanical properties of magnesium using nano-yttria reinforcement and microwave assisted powder metallurgy method. Compos Sci Technol 67(13):2657–2664

    Article  Google Scholar 

  52. Kapoor R, Kumar N, Mishra R, Huskamp C, Sankaran K (2010) Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al–Mg alloy. Mater Sci Eng A 527(20):5246–5254

    Article  Google Scholar 

  53. Dai L, Ling Z, Bai Y (2001) Size-dependent inelastic behavior of particle-reinforced metal–matrix composites. Compos Sci Technol 61(8):1057–1063

    Article  Google Scholar 

  54. Li Y, Zhao Y, Ortalan V, Liu W, Zhang Z, Vogt R, Browning N, Lavernia E, Schoenung J (2009) Investigation of aluminum-based nanocomposites with ultra-high strength. Mater Sci Eng A 527(1–2):305–316

    Article  Google Scholar 

  55. Jayaramanavar P, Paramsothy M, Balaji A, Gupta M (2010) Tailoring the tensile/compressive response of magnesium alloy ZK60A using Al2O3 nanoparticles. J Mater Sci 45(5):1170–1178

    Article  Google Scholar 

  56. Paramsothy M, Hassan S, Srikanth N, Gupta M (2009) Enhancement of compressive strength and failure strain in AZ31 magnesium alloy. J Alloys Compd 482(1–2):73–80

    Article  Google Scholar 

  57. Thakur S, Paramsothy M, Gupta M (2010) Improving tensile and compressive strengths of magnesium by blending it with aluminium. Mater Sci Technol 26(1):115–120

    Article  Google Scholar 

  58. Dieter G (1961) Statistical treatment of the fatigue limit. In: Mechanical metallurgy New York-Toronto-London. McGraw-Hill Book Company, pp 446–450

  59. Nguyen Q, Gupta M (2008) Increasing significantly the failure strain and work of fracture of solidification processed AZ31B using nano-Al2O3 particulates. J Alloys Compd 459(1–2):244–250

    Article  Google Scholar 

  60. Ye J, Han BQ, Lee Z, Ahn B, Nutt SR, Schoenung JM (2005) A tri-modal aluminum based composite with super-high strength. Scr Mater 53(5):481–486

    Article  Google Scholar 

  61. Chuvildeev V, Panov D, Boldin M, Nokhrin A, Blagoveshchensky YV, Sakharov N, Shotin S, Kotkov D (2015) Structure and properties of advanced materials obtained by spark plasma sintering. Acta Astronaut 109:172–176

    Article  Google Scholar 

  62. Tokita M (2013) Handbook of advanced ceramics: chapter 11.2. 3. Spark plasma sintering (sps) method, systems, and applications. Elsevier Inc. Chapters

  63. Shen Z, Johnsson M, Zhao Z, Nygren M (2002) Spark plasma sintering of alumina. J Am Ceram Soc 85(8):1921–1927

    Article  Google Scholar 

  64. Munir ZA, Quach DV, Ohyanagi M (2011) Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc 94(1):1–19

    Article  Google Scholar 

  65. Tokita M (2005) Development of hardware and software for spark plasma sintering(SPS) technology. J High Temper Soc Jpn 31(4):215–224

    Google Scholar 

  66. Grasso S, Sakka Y, Maizza G (2009) Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008. Sci Technol Adv Mater 10(5):053001

    Article  Google Scholar 

  67. Tokita M (2010) The potential of spark plasma sintering (SPS) method for the fabrication on an industrial scale of functionally graded materials. In: Advances in Science and Technology. Trans Tech Publ, pp 322–331

  68. Liu R, Wang W, Chen H, Tan M, Zhang Y (2018) Microstructure evolution and mechanical properties of micro-/nano-bimodal size B4C particles reinforced aluminum matrix composites prepared by SPS followed by HER. Vacuum 151:39–50

    Article  Google Scholar 

  69. Orru R, Licheri R, Locci AM, Cincotti A, Cao G (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R Rep 63(4–6):127–287

    Article  Google Scholar 

  70. Inam F, Vo T, Bhat BR (2014) Structural stability studies of graphene in sintered ceramic nanocomposites. Ceram Int 40(10):16227–16233

    Article  Google Scholar 

  71. Reddy AP, Krishna PV, Rao RN, Murthy N (2017) Silicon carbide reinforced aluminium metal matrix Nano composites-a review. Mater Today: Proc 4(2):3959–3971

    Google Scholar 

  72. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1–2):1–184

    Article  Google Scholar 

  73. Bhat BR, Subramanyam J, Prasad VB (2002) Preparation of Ti-TiB-TiC & Ti-TiB composites by in-situ reaction hot pressing. Mater Sci Eng A 325(1–2):126–130

    Article  Google Scholar 

  74. Panda K, Chandran KR (2003) Synthesis of ductile titanium-titanium boride (Ti-TiB) composites with a beta-titanium matrix: the nature of TiB formation and composite properties. Metall Mater Trans A 34(6):1371–1385

    Article  Google Scholar 

  75. Gorsse S, Miracle D (2003) Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements. Acta Mater 51(9):2427–2442

    Article  Google Scholar 

  76. Yamamoto T, Otsuki A, Ishihara K, Shingu P (1997) Synthesis of near net shape high density TiB/Ti composite. Mater Sci Eng A 239:647–651

    Article  Google Scholar 

  77. Zhang X, Lü W, Zhang D, Wu R, Bian Y, Fang P (1999) In situ technique for synthesizing (TiB+ TiC)/Ti composites. Scr Mater 41(1):39–46

    Article  Google Scholar 

  78. Knacke O, Kubaschewski O, Hesselmann K (1991) Thermodynamic properties of inorganic substances. Springer, Berlin

    Google Scholar 

  79. Godfrey T, Wisbey A, Goodwin P, Bagnall K, Ward-Close C (2000) Microstructure and tensile properties of mechanically alloyed Ti–6A1–4V with boron additions. Mater Sci Eng A 282(1–2):240–250

    Article  Google Scholar 

  80. Sivakumar G, Ananthi V, Ramanathan S (2017) Production and mechanical properties of nano SiC particle reinforced Ti–6Al–4V matrix composite. Trans Nonferrous Metals Soc China 27(1):82–90

    Article  Google Scholar 

  81. Melendez IM, Neubauer E, Angerer P, Danninger H, Torralba J (2011) Influence of nano-reinforcements on the mechanical properties and microstructure of titanium matrix composites. Compos Sci Technol 71(8):1154–1162

    Article  Google Scholar 

  82. Falodun OE, Obadele BA, Oke SR, Maja ME, Olubambi PA (2018) Effect of sintering parameters on densification and microstructural evolution of nano-sized titanium nitride reinforced titanium alloys. J Alloys Compd 736:202–210

    Article  Google Scholar 

  83. Obadele B, Masuku Z, Olubambi P (2012) Turbula mixing characteristics of carbide powders and its influence on laser processing of stainless steel composite coatings. Powder Technol 230:169–182

    Article  Google Scholar 

  84. Falodun OE, Obadele BA, Oke SR, Ige OO, Olubambi PA (2018) Effect of TiN and TiCN additions on spark plasma sintered Ti–6Al–4V. Part Sci Technol 1–10

  85. Prakash KS, Gopal P, Anburose D, Kavimani V (2016) Mechanical, corrosion and wear characteristics of powder metallurgy processed Ti-6Al-4V/B4C metal matrix composites. Ain Shams Eng J

  86. Balaji VS, Kumaran S (2014) Densification and microstructural studies of titanium–boron carbide (B4C) powder mixture during spark plasma sintering. Powder Technol 264:536–540. https://doi.org/10.1016/j.powtec.2014.05.050

    Article  Google Scholar 

  87. Namini AS, Azadbeh M, Asl MS (2017) Effect of TiB2 content on the characteristics of spark plasma sintered Ti–TiBw composites. Adv Powder Technol 28(6):1564–1572

    Article  Google Scholar 

  88. Namini AS, Azadbeh M, Asl MS (2018) Effects of in-situ formed TiB whiskers on microstructure and mechanical properties of spark plasma sintered Ti-B4C and Ti-TiB2 composites

  89. Hao Y, Liu J, Li J, Li S, Zou Q, Chen X (2015) Rapid preparation of TiC reinforced Ti6Al4V based composites by carburizing method through spark plasma sintering technique. Mater Des (1980–2015) 65:94–97

    Article  Google Scholar 

  90. Liu B, Li Y, Matsumoto H, Liu Y, Liu Y, Tang H, Chiba A (2010) Thermomechanical response of particulate-reinforced powder metallurgy titanium matrix composites—a study using processing map. Mater Sci Eng A 527(18–19):4733–4741

    Article  Google Scholar 

  91. Tjong SC, Mai Y-W (2008) Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites. Compos Sci Technol 68(3):583–601. https://doi.org/10.1016/j.compscitech.2007.07.016

    Article  Google Scholar 

  92. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45(2):103–189

    Article  Google Scholar 

  93. Ma Z, Li Y, Liang Y, Zheng F, Bi J, Tjong S (1996) Nanometric Si3N4 particulate-reinforced aluminum composite. Mater Sci Eng A 219(1–2):229–231

    Article  Google Scholar 

  94. Tjong SC (2013) Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng R Rep 74(10):281–350

    Article  Google Scholar 

  95. Feng H, Zhou Y, Jia D, Meng Q (2004) Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering. Compos Sci Technol 64(16):2495–2500

    Article  Google Scholar 

  96. Maja ME, Falodun OE, Obadele BA, Oke SR, Olubambi PA (2018) Nanoindentation studies on TiN nanoceramic reinforced Ti–6Al–4V matrix composite. Ceram Int 44(4):4419–4425

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Global Excellence and Stature at the University of Johannesburg for funding Oluwasegun Falodun.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwasegun Eso Falodun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falodun, O.E., Obadele, B.A., Oke, S.R. et al. Titanium-based matrix composites reinforced with particulate, microstructure, and mechanical properties using spark plasma sintering technique: a review. Int J Adv Manuf Technol 102, 1689–1701 (2019). https://doi.org/10.1007/s00170-018-03281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-03281-x

Keywords

Navigation