Skip to main content
Log in

Numerical and experimental investigation on the cross-wedge rolling of powder sintering TC4 alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The application and demand of titanium alloys has been steadily increasing in aviation due to the excellent high-temperature performance. Powder metallurgy (PM) technology has been widely applied in the production of titanium alloy but with more disadvantages. The application of the cross-wedge rolling (CWR) process to manufacture powder sintering titanium alloy has received the least attention but is most significant. This paper presents a numerical and experimental study on the CWR of sintering TC4 alloy blade preforms. The deformation behavior of sintering TC4 alloy was investigated, and a constitutive equation at peak stress was developed and implemented into a finite element (FE) model, by which we analyzed the effect of tool parameters, forming quality, and forming mechanism in the CWR process. We also investigated the effect of the deformation temperature and area reduction on forming quality with CWR experiments. The results show that the deformation behavior of sintering TC4 alloy is sensitive to temperature and strain rate, and the constitutive equation is capable of predicting the flow stress for the CWR process. Among the tool parameters, area reduction is the most significant factor and showed the best performance at less than 65.9%. An applicable range of process parameters for the CWR of sintering TC4 alloy was obtained. After rolling, the relative density improves from 86.21 to 98.2%, and the mechanical properties of the workpiece are significantly enhanced, especially for elongation. Compared with 45# steel, the temperature difference in the radial direction (ΔT) of TC4 alloy is much larger due to a lower thermal conductivity. However, the rolling force and torque of TC4 alloy needed in the CWR process are only half as much as those of 45#.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyer RR (1996) An overview on the use of titanium in the aerospace industry. Mater Sci Eng A 213(1–2):103–114. doi:10.1016/0921-5093(96)10233-1

    Article  Google Scholar 

  2. Boyer RR, Welsch G, Collings EW (1994) Materials properties handbook—titanium alloys. ASM International, Materials Park, OH

    Google Scholar 

  3. German RM (1998) Powder metallurgy of iron and steel. Metall Mater Trans A 198:578–579

    Google Scholar 

  4. Kushchevskii AE, Bondar VT, Krylova NA, Mozol TF, Romanenko OM (1990) An investigation of the structure of powder metallurgy iron with different porosities by scanning electron microscopy. Powder Metal Met C 29(9):745–748. doi:10.1007/BF00795587

    Article  Google Scholar 

  5. Wang HY, Jiang QC, Wang Y, Ma BX, Zhao F (2005) Fabrication of TiB2 particulate reinforced magnesium matrix composite by powder metallurgy. J Alloy Compd 386(1):177–181. doi:10.1016/j.matlet.2004.04.038

    Google Scholar 

  6. Grison J, Remy L (1997) Fatigue failure probability in a powder metallurgy Ni-base superalloy. Eng Fract Mech 57(1):41–55. doi:10.1016/S0013-7944(97)00006-4

    Article  Google Scholar 

  7. He GA, Liu F, Huang L, Huang ZW, Jiang L (2016) Microstructure evolutions and nucleation mechanisms of dynamic recrystallization of a powder metallurgy Ni-based superalloy during hot compression. Mater Sci Eng A 677:496–504. doi:10.1016/j.msea.2016.09.083

    Article  Google Scholar 

  8. Liu Y, Chen LF, Tang HP, Liu CT, Liu B, Huang BY (2006) Design of powder metallurgy titanium alloys and composites. Mater Sci Eng A 418(1–2):25–35. doi:10.1016/j.msea.2005.10.057

    Article  Google Scholar 

  9. McEldowney DJ, Tamirisakandala S, Miracle DB (2010) Heat-treatment effects on the microstructure and tensile properties of powder metallurgy Ti-6Al-4V alloys modified with boron. Metall Mater Trans A 41(4):1003–1015. doi:10.1007/s11661-009-0157-y

    Article  Google Scholar 

  10. Roush ED, Kobryn PA, Semiatin SL (2001) Anisotropy of plastic flow and microstructure evolution during hot working of laser-deposited Ti-6Al-4V. Scripta Mater 45:717–724. doi:10.1016/S1359-6462(01)01084-3

    Article  Google Scholar 

  11. Semiatin SL, Kobryn PA, Roush ED, Furrer DJ, Howson TE, Boyer RR, Chellman DJ (2001) Plastic flow and microstructure evolution during thermomechanical processing of laser-deposited Ti-6Al-4V preforms. Metall Mater Trans A 32(7):1801–1811. doi:10.1007/s11661-001-0156-0

    Article  Google Scholar 

  12. Lafer M, Bouvard D, Stutz P, Pierronnet M, Raisson G (1992) Densification behaviour of particle-reinforced superalloy powder during hot isostatic pressing. Springer, the Netherlands, pp 209–214

    Google Scholar 

  13. Anderson MJ, McGuire K, Zante RC, Ion WJ, Rosochowski A, Brooks JW (2013) Identifying the dominant failure mode in the hot extrusion tooling used to forge nickel based superalloy. J Mater Process Tech 213(1):111–119. doi:10.1016/j.jmatprotec.2012.09.002

    Article  Google Scholar 

  14. Immarigeon JPA, Floyd PH (1981) Microstructural instabilities during superplastic forging of a nickel-base superalloy compact. Metall Mater Trans A 12(7):1177–1186. doi:10.1007/BF02642331

    Article  Google Scholar 

  15. Zhang MJ, Li FG, Wang SY, Liu CY (2011) Effect of powder preparation technology on the hot deformation behavior of HIPed P/M nickel-base superalloy FGH96. Mater Sci Eng A 528(12):4030–4039. doi:10.1016/j.msea.2011.01.118

    Article  Google Scholar 

  16. Yang CP, Ma JW, Hu ZH (2017) Analysis and design of cross wedge rolling hollow axle sleeve with mandrel. J Mater Process Tech 239:346–358. doi:10.1016/j.jmatprotec.2016.09.002

    Article  Google Scholar 

  17. Ji HC, Liu JP, Wang BY, Zheng ZH, Huang JH, Hu ZH (2015) Cross-wedge rolling of a 4Cr9Si2 hollow valve: explorative experiment and finite element simulation. Int J Adv Manuf Technol 77(1–4):15–26. doi:10.1007/s00170-014-6363-9

    Article  Google Scholar 

  18. Pater Z, Gontarz A, Weroński W (2006) Cross-wedge rolling by means of one flat wedge and two shaped rolls. J Mater Process Tech 177(1–3):550–554. doi:10.1016/j.jmatprotec.2006.03.232

    Article  Google Scholar 

  19. Pater Z (2010) Development of cross-wedge rolling theory and technology. Steel Res Int 81(9):25–32

    Google Scholar 

  20. Bartnicki J, Pater Z (2005) Numerical simulation of three-rolls cross-wedge rolling of hollowed shaft. J Mater Process Tech 164-165:1154–1159. doi:10.1016/j.jmatprotec.2005.02.120

    Article  Google Scholar 

  21. Pater Z (2000) Theoretical and experimental analysis of cross wedge rolling process. Int J Mach Tools Manuf 40(1):49–63. doi:10.1016/S0890-6955(99)00047-4

    Article  Google Scholar 

  22. Li Q, Lovell MR, Slaughter W, Tagavi K (2002) Investigation of the morphology of internal defects in cross wedge rolling. J Mater Process Tech 125:248–257. doi:10.1016/S0924-0136(02)00303-5

    Article  Google Scholar 

  23. Li Q, Lovel l MR. (2004) The establishment of a failure criterion in cross wedge rolling. Int J Adv Manuf Technol 24(3–4). doi:10.1007/s00170-003-1607-0

  24. Urankar S, Lovell MR, Morrow C, Li Q, Kawada K (2006) Establishment of failure conditions for the cross-wedge rolling of hollow shafts. J Mater Process Tech 177(1–3):545–549. doi:10.1016/j.jmatprotec.2006.04.052

    Article  Google Scholar 

  25. Pater Z, Andrzej G, Tofil A (2011) Analysis of the cross-wedge rolling process of toothed shafts made from 2618 aluminium alloy. J Shanghai Jiaotong Univ 16(2):162–166. doi:10.1007/s12204-011-1119-2

    Article  Google Scholar 

  26. Bartnicki J, Tomczak J, Pater Z (2015) Numerical analysis of the cross-wedge rolling process by means of three tools of stepped shafts from aluminum alloy 7075. Arch Metall Mater 60(1):433–435. doi:10.1515/amm-2015-0071

    Article  Google Scholar 

  27. Zhang N, Wang BY, Lin JG (2012) Effect of cross wedge rolling on the microstructure of GH4169 alloy. Int J Min Met Mater 19(9):836–842. doi:10.1007/s12613-012-0636-9

    Article  Google Scholar 

  28. Chen Y, Gan HY, Zhang SH, Cheng M, Song HW (2016) Analysis of deformation and internal defect in flat-wedge cross-wedge rolling of GH4169 superalloy. Mater Sci Forum 879:324–329. doi:10.4028/www.scientific.net/MSF.879.324

    Article  Google Scholar 

  29. Mirahmadi SJ, Hamedi M, Ajami S (2014) Investigating the effects of cross wedge rolling tool parameters on formability of Nimonic® 80A and Nimonic® 115 superalloys. Int J Adv Manuf Technol 74(5–8):995–1004. doi:10.1007/s00170-014-6047-5

    Article  Google Scholar 

  30. Çakırcalı M, Kılıçaslan C, Güden M, Kıranlı E, Shchukin VY, Petronko VV (2013) Cross wedge rolling of a Ti6Al4V (ELI) alloy: the experimental studies and the finite element simulation of the deformation and failure. Int J Adv Manuf Technol 65(9–12):1273–1287. doi:10.1007/s00170-012-4256-3

    Google Scholar 

  31. Jia Z, Zhou J, Ji JJ, Yu YY, Xiao C (2012) Influence of tool parameters on internal voids in cross wedge rolling of aluminum alloy parts. T Nonferr Metal Soc 22:s21–s26. doi:10.1016/S1003-6326(12)61678-1

    Article  Google Scholar 

  32. Xu X, Dong LM, Ba HB, Zhang ZQ, Yang R (2016) Hot deformation behavior and microstructural evolution of beta C titanium alloy in β phase field. T Nonferr Metal Soc 26(11):2874–2882. doi:10.1016/S1003-6326(16)64416-3

    Article  Google Scholar 

  33. Bai Q, Lin JG, Dean TA, Balint DS, Gao T, Zhang Z (2013) Modelling of dominant softening mechanisms for Ti-6Al-4V in steady state hot forming conditions. Mater Sci Eng A 559:352–358. doi:10.1016/j.msea.2012.08.110

    Article  Google Scholar 

  34. Yang L, Wang BY, Liu G, Zhao HJ, Xiao WC (2015) Behavior and modeling of flow softening and ductile damage evolution in hot forming of TA15 alloy sheets. Mater Design 85:135–148. doi:10.1016/j.matdes.2015.06.096

    Article  Google Scholar 

  35. Peng XN, Guo HZ, Shi ZF, Qin C, Zhao ZL (2013) Constitutive equations for high temperature flow stress of TC4-DT alloy incorporating strain, strain rate and temperature. Mater Design 50(17):198–206. doi:10.1016/j.matdes.2013.03.009

    Article  Google Scholar 

  36. Peng XN, Guo HZ, Shi ZF, Qin C, Zhao ZL, Yao ZK (2014) Study on the hot deformation behavior of TC4-DT alloy with equiaxed α+β starting structure based on processing map. Mater Sci Eng A 605:80–88. doi:10.1016/j.msea.2014.03.047

    Article  Google Scholar 

  37. Cai J, Li FG, Liu TY, Chen B, He M (2011) Constitutive equations for elevated temperature flow stress of Ti–6Al–4V alloy considering the effect of strain. Mater Design 32(3):1144–1151. doi:10.1016/j.matdes.2010.11.004

    Article  Google Scholar 

  38. Pater Z (2006) Finite element analysis of cross wedge rolling. J Mater Process Tech 173(2):201–208. doi:10.1016/j.jmatprotec.2005.11.027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoyu Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, B., Ji, H. et al. Numerical and experimental investigation on the cross-wedge rolling of powder sintering TC4 alloy. Int J Adv Manuf Technol 94, 2149–2162 (2018). https://doi.org/10.1007/s00170-017-0992-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0992-8

Keywords

Navigation