Skip to main content
Log in

Boundary conditions optimization of spindle thermal error analysis and thermal key points selection based on inverse heat conduction

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Thermal error of the spindle is one of the primary contributors of the inaccuracy of the precision machine tools. In order to study the thermal characteristics of the spindle, finite element analysis has been widely used. However, the accuracy of numerical simulation is highly dependent on the boundary conditions especially the coefficients of convection heat transfer. In this paper, the inverse heat conduction theory is introduced and used for optimizing the coefficients of convection heat transfer. Then, the temperature field and thermal error of the spindle are simulated in ANSYS. Based on the simulation results, a new method called mean impact value is proposed to select the thermal key points in the spindle system. Finally, the verification experiments are conducted on a precision horizontal machining center. By comparing the simulation results with the experimental data, the correctness and effectiveness of the heat convection coefficient optimization are verified. In addition, the results of thermal error modeling based on multiple variables including the temperatures of the thermal key points show that the result of the thermal key point selection is satisfying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramesh R, Mannan M, Poo A (2000) Error compensation in machine tools—a review: part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tools Manuf 40(9):1235–1256

    Article  Google Scholar 

  2. Mancisidor I, Zatarain M, Munoa J, Dombovari Z (2011) Fixed boundaries receptance coupling substructure analysis for tool point dynamics prediction. Adv Mater Res 223:622–631

    Article  Google Scholar 

  3. Huang Y, Zhang J, Li X, Tian L (2014) Thermal error modeling by integrating GA and BP algorithms for the high-speed spindle. Int J Adv Manuf Technol 1–7

  4. Bryan J (1990) International status of thermal error research (1990). CIRP annals-manufacturing technology 39(2):645–656

    Article  MathSciNet  Google Scholar 

  5. Sarhan AA (2014) Investigate the spindle errors motions from thermal change for high-precision CNC machining capability. Int J Adv Manuf Technol 70(5–8):957–963

    Article  Google Scholar 

  6. Li Y, Zhao W, Lan S, Ni J, Wu W, Lu B (2015) A review on spindle thermal error compensation in machine tools. International Journal of Machine Tools & Manufacture 95:20–38

    Article  Google Scholar 

  7. Creighton E, Honegger A, Tulsian A, Mukhopadhyay D (2010) Analysis of thermal errors in a high-speed micro-milling spindle. Int J Mach Tools Manuf 50(4):386–393

    Article  Google Scholar 

  8. Li B, Hong J, Tian X (2016) Generating optimal topologies for heat conduction by heat flow paths identification. International Communications in Heat & Mass Transfer 75:177–182

    Article  Google Scholar 

  9. Postlethwaite S, Allen J, Ford D (1999) Machine tool thermal error reduction—an appraisal. Proc Inst Mech Eng B J Eng Manuf 213(1):1–9

    Google Scholar 

  10. Uhlmann E, Hu J (2012) Thermal modelling of a high speed motor spindle. Procedia CIRP 1:313–318

    Article  Google Scholar 

  11. Xiang S, Zhu X, Yang J (2014) Modeling for spindle thermal error in machine tools based on mechanism analysis and thermal basic characteristics tests. Proc Inst Mech Eng C: J Mech Eng Sci 0954406214531219

  12. Chen D, Bonis M, Zhang F, Dong S (2011) Thermal error of a hydrostatic spindle. Precis Eng 35(3):512–520

    Article  Google Scholar 

  13. Zhang J, Li H (2012) Thermal performance analysis for the machine tool’s spindle. In: 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA). pp 2131–2134

  14. Ma X, Qiu J, Liu QW, Lin J (2012) Study on Spindle Thermal Field Distribution and Thermal Errors of Horizontal Machine Tool. In: Materials Science Forum. Trans Tech Publ, pp 273–276

  15. Han J, Wang LP, Yu LQ (2010) Modeling and estimating thermal error in precision machine spindles. Applied Mechanics and Materials 34:507–511

    Article  Google Scholar 

  16. Haitao Z, Jianguo Y, Jinhua S (2007) Simulation of thermal behavior of a CNC machine tool spindle. Int J Mach Tools Manuf 47(6):1003–1010

    Article  Google Scholar 

  17. Alifanov OM (2012) Inverse heat transfer problems. Springer Science & Business Media

  18. Ozisik MN, Orlande H, Kassab AJ (2002) Inverse heat transfer: fundamentals and applications. Appl Mech Rev 55(1):B18

    Article  Google Scholar 

  19. Wang G, Zhu L, Chen H (2011) A decentralized fuzzy inference method for solving the two-dimensional steady inverse heat conduction problem of estimating boundary condition. International Journal of Heat & Mass Transfer 54(13):2782–2788

    Article  MATH  Google Scholar 

  20. Baş D, Boyacı İH (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78(3):836–845

    Article  Google Scholar 

  21. Liu Y-T, Zhang L (2016) An investigation into the aspheric ultraprecision machining using the response surface methodology. Precis Eng 44:203–210. doi:10.1016/j.precisioneng.2015.12.006

    Article  Google Scholar 

  22. Lienhard JH (2013) A heat transfer textbook. Courier Corporation

  23. Li Y, Zhao W Axial thermal error compensation method for the spindle of a precision horizontal machining center. In: Mechatronics and Automation (ICMA), 2012 International Conference on, 2012. IEEE, pp 2319–2323

  24. Harris T (1991) Rolling bearing analysis. Willey, New York

    Google Scholar 

  25. Guo Q, Yang J, Wu H (2010) Application of ACO-BPN to thermal error modeling of NC machine tool. Int J Adv Manuf Technol 50(5–8):667–675

    Article  Google Scholar 

  26. Vyroubal J (2012) Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method. Precis Eng 36(1):121–127

    Article  Google Scholar 

  27. Weck M, McKeown P, Bonse R, Herbst U (1995) Reduction and compensation of thermal errors in machine tools. CIRP Annals-Manufacturing Technology 44(2):589–598

    Article  Google Scholar 

  28. Lo C-H, Yuan J, Ni J (1999) Optimal temperature variable selection by grouping approach for thermal error modeling and compensation. Int J Mach Tools Manuf 39(9):1383–1396

    Article  Google Scholar 

  29. Han J, Wang L, Wang H, Cheng N (2012) A new thermal error modeling method for CNC machine tools. Int J Adv Manuf Technol 62(1–4):205–212

    Article  Google Scholar 

  30. Li Y, Yang J, Gelvis T, Li Y (2008) Optimization of measuring points for machine tool thermal error based on grey system theory. Int J Adv Manuf Technol 35(7–8):745–750

    Article  Google Scholar 

  31. Yan J, Yang J (2009) Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation. Int J Adv Manuf Technol 43(11–12):1124–1132

    Article  Google Scholar 

  32. Jiang JL, Su X, Zhang H, Zhang XH, Yuan YJ (2013) A novel approach to active compounds identification based on support vector regression model and mean impact value. Chem Biol Drug Des 81(5):650–657

    Article  Google Scholar 

  33. Zhong-guang F, Min-fang Q, Yuan J (2012) Regression forecast of main steam flow based on mean impact value and support vector regression. In: Power and Energy Engineering Conference (APPEEC), 2012 Asia-Pacific. pp 1–5. doi:10.1109/APPEEC.2012.6307580

  34. Li Y, Zhao W, Wu W, Lu B, Chen Y (2014) Thermal error modeling of the spindle based on multiple variables for the precision machine tool. Int J Adv Manuf Technol 72(9–12):1415–1427. doi:10.1007/s00170-014-5744-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanhua Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhao, W., Wu, W. et al. Boundary conditions optimization of spindle thermal error analysis and thermal key points selection based on inverse heat conduction. Int J Adv Manuf Technol 90, 2803–2812 (2017). https://doi.org/10.1007/s00170-016-9594-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9594-0

Keywords

Navigation