Skip to main content
Log in

MQL with water in cylindrical plunge grinding of hardened steels using CBN wheels, with and without wheel cleaning by compressed air

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Minimum quantity of lubricant (MQL) in grinding is an alternative for reducing abundant fluid flow and both environmental and health hazards when compared with conventional fluid application. In spite of the fact that MQL is considered an innovative cost-effective and environmentally friendly technique, when used in grinding its inadequate application can increase cutting temperature and wheel clogging, worsening surface roughness, and increasing geometric and dimensional errors. The present study aims to evaluate improvements in MQL in grinding using MQL + water (1:1, 1:3, and 1:5 parts of oil per parts of water), when compared to MQL without water and conventional cooling-lubrication technique. Wheel cleaning by compressed air was also tested, aimed for unclogging of the wheel pores. The tests were performed in a plunge cylindrical grinder with CBN wheel and workpieces of AISI 4340 for different feed rates. The ground workpieces were analyzed with respect to the surface roughness, roundness errors, microhardness, and microscopic changes. In addition, tangential cutting force and diametric wheel wear were investigated. The results observed for the MQL plus water in the proportion of 1:5, with wheel cleaning system (at 30° inclination angle of the air nozzle) were the best, when compared to MQL without water, and close to the conventional flood coolant, implying that this technique is a potential alternative for cooling-lubrication when applied properly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tawakoli T, Hadad MJ, Sadeghi MH et al (2009) An experimental investigation of the effects of workpiece and grinding parameters on minimum quantity lubrication-MQL grinding. Int J Mach Tools Manuf 49:924–932. doi:10.1016/j.ijmachtools.2009.06.015

    Article  Google Scholar 

  2. Sharma VS, Singh G, Sørby K (2014) A review on minimum quantity lubrication for machining processes. Mater Manuf Process 30:935–953. doi:10.1080/10426914.2014.994759

    Article  Google Scholar 

  3. Hryniewicz P, Szeri AZ, Jahanmir S (2000) Coolant flow in surface grinding with non-porous wheels. Int J Mech Sci 42:2347–2367. doi:10.1016/S0020-7403(99)00084-3

    Article  MATH  Google Scholar 

  4. Malkin S, Guo C (2008) Grinding technology: theory and application of machining with abrasives, 2nd edn. Industrial Press, New York

    Google Scholar 

  5. Winter M, Bock R, Herrmann C (2013) Investigation of a new polymer-water based cutting fluid to substitute mineral oil based fluids in grinding processes. CIRP J Manuf Sci Technol 6:254–262. doi:10.1016/j.cirpj.2013.07.003

    Article  Google Scholar 

  6. Ebbrell S, Woolley NH, Tridimas YD et al (2000) The effects of cutting fluid application methods on the grinding process. Int J Mach Tools Manuf 40:209–223. doi:10.1016/S0890-6955(99)00060-7

    Article  Google Scholar 

  7. Tawakoli T, Hadad M, Sadeghi MH et al (2011) Minimum quantity lubrication in grinding: effects of abrasive and coolant-lubricant types. J Clean Prod 19:2088–2099. doi:10.1016/j.jclepro.2011.06.020

    Article  Google Scholar 

  8. Sadeghi MH, Haddad J, Tawakoli T, Emami M (2009) Minimal quantity lubrication-MQL in grinding of Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol 44:487–500. doi:10.1007/s00170-008-1857-y

    Article  Google Scholar 

  9. Di Ilio A, Paoletti A (2000) Comparison between conventional abrasives and superabrasives in grinding of SiC-aluminium composites. Int J Mach Tools Manuf 40:173–184. doi:10.1016/S0890-6955(99)00061-9

    Article  Google Scholar 

  10. Belentani RDM, Funes Júnior H, Canarim RC et al (2014) Utilization of minimum quantity lubrication (MQL) with water in CBN grinding of steel. Mater Res 17:88–96. doi:10.1590/S1516-14392013005000165

    Article  Google Scholar 

  11. Nascimento WR, Yamamoto AA, Mello HJ et al (2015) A study on the viability of minimum quantity lubrication with water in grinding of ceramics using a hybrid-bonded diamond wheel. Proc Inst Mech Eng Part B J Eng Manuf 1–9. doi:10.1177/0954405415579016

  12. Mao C, Tang X, Zou H et al (2011) Experimental investigation of surface quality for minimum quantity oil-water lubrication grinding. Int J Adv Manuf Technol 59:93–100. doi:10.1007/s00170-011-3491-3

    Article  Google Scholar 

  13. Oliveira DDJ, Guermandi LG, Bianchi EC et al (2012) Improving minimum quantity lubrication in CBN grinding using compressed air wheel cleaning. J Mater Process Technol 212:2559–2568. doi:10.1016/j.jmatprotec.2012.05.019

    Article  Google Scholar 

  14. Marinescu ID, Rowe WB, Dimitrov B, Inasaki I (2004) Tribology of abrasive machining processes, 1st edn. William Andrew, Inc., Norwich

    Google Scholar 

  15. Silva LR, Bianchi EC, Fusse RY et al (2007) Analysis of surface integrity for minimum quantity lubricant-MQL in grinding. Int J Mach Tools Manuf 47:412–418. doi:10.1016/j.ijmachtools.2006.03.015

    Article  Google Scholar 

  16. Silva LR, Corrêa ECS, Brandão JR, De Ávila RF (2013) Environmentally friendly manufacturing: behavior analysis of minimum quantity of lubricant—MQL in grinding process. J Clean Prod. doi:10.1016/j.jclepro.2013.01.033

    Google Scholar 

  17. Sohal N, Sandhu CS, Panda BK (2014) Analyzing the effect of grinding parameters on MRR and surface roughness of EN24 and EN353 steel. Mech Confab 3:1–6

    Google Scholar 

  18. Brinksmeier E, Heinzel C, Wittmann M (1999) Friction, cooling and lubrication in grinding. CIRP Ann Manuf Technol 48:581–598. doi:10.1016/S0007-8506(07)63236-3

    Article  Google Scholar 

  19. Shaw MC (1996) Energy conversion in cutting and grinding*. CIRP Ann Manuf Technol 45:101–104. doi:10.1016/S0007-8506(07)63025-X

    Article  Google Scholar 

  20. Tawakoli T, Westkämper E, Rabiey M, Rasifard A (2007) Influence of the type of coolant lubricant in grinding with CBN tools. Int J Mach Tools Manuf 47:734–739. doi:10.1016/j.ijmachtools.2006.09.010

    Article  Google Scholar 

  21. Wang Y, Li C, Zhang Y et al (2016) Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding using different types of vegetable oils. J Clean Prod. doi:10.1016/j.jclepro.2016.03.121

    Google Scholar 

  22. Silva LR, Bianchi EC, Catai RE et al (2005) Study on the behavior of the minimum quantity lubricant—MQL technique under different lubricating and cooling conditions when grinding ABNT 4340 steel. J Braz Soc Mech Sci Eng 27:192–199. doi:10.1590/S1678-58782005000200012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Roberto de Aguiar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruzzi, R.d., Belentani, R.d., de Mello, H.J. et al. MQL with water in cylindrical plunge grinding of hardened steels using CBN wheels, with and without wheel cleaning by compressed air. Int J Adv Manuf Technol 90, 329–338 (2017). https://doi.org/10.1007/s00170-016-9396-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9396-4

Keywords

Navigation