Skip to main content
Log in

A review of micro-devices assembly techniques and technology

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper provides a review of techniques and technology relevant to the field of micro-devices assembly (MDA). MDA is an emerging domain of importance which is expected to have a substantial impact on a range of industrial fields including sensors, surveillance devices, and semiconductor devices. This paper provides a review of a cross-section of research including micro-gripping design and manipulation techniques, work cell design and factory automation, self-assembly techniques, and virtual reality-based approaches in micro-assembly. A discussion of the key challenges for this domain along with directions for future research is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cecil J, Powell D, Vasquez D (2007) Assembly and manipulation of micro devices—a state of the art survey. Robot Comput Integr Manuf 23(5):580–588

    Article  Google Scholar 

  2. Salmeron AJ, Tarazon RL et al (2005) Recent development in micro-handling systems for micro-engineering. J Mater Process Technol 167(2–3):499–507

    Article  Google Scholar 

  3. Hassani Niaki M et al (2012) Deriving and analyzing the effective parameters in micro grippers performance. Scientica Iranica 19(6):1554–1563

    Article  Google Scholar 

  4. Ballandras S, Basrour S, Robert L, Megtert S, Blind P et al (1997) Micro grippers fabricated by the LIGA technique. Sensors Actuators A Phys 58(3):265–272

    Article  Google Scholar 

  5. Nashrul M, Shirinzadeh B (2009) Development of a high precision flexure based micro gripper. Precis Eng 33(4):362–370

    Article  Google Scholar 

  6. Ivanova K, Ivanov T et al (2006) Thermally driven micro gripper as a tool for micro assembly. Microelectric Eng 83(4–9):1393–1395

    Article  Google Scholar 

  7. Enikov ET, Lazarov KV (2001) Optically transparent gripper for microassembly. Proc SPIE Microrobotics Microassembly 4568:40–49

    Article  Google Scholar 

  8. Hamedi M, Salimi P, Vismeh M (2012) Simulation and experimental investigation of a novel electrostatic micro gripper system. Mechatronic Eng 98:467–471

    Google Scholar 

  9. Yi Y, Liu C (1999) Assembly of micro-optical devices using magnetic actuation. Sensors Actuators A Phys 78(2–3):205–211

    Article  Google Scholar 

  10. Wester B, Rajaraman S, Ross J et al (2011) Development and characterization of a packaged mechanically actuated microtweezer system. Sensors Actuators A Phys 167(2):502–511

    Article  Google Scholar 

  11. Chen BK, Zhang Y, Sun Y (2009) Active release of microobjects using a MEMS micro gripper to overcome adhesion forces. J Microelectromech Syst 18(3):652–659

    Article  Google Scholar 

  12. Khan S, Boer T, Estevez P, Langen HH, Schmidt RH (2010) Development of haptic micro gripper for microassembly operation. Haptics: Generating Perceiving Tangible Sensations Lect Notes Comp Sci 6192:309–314

    Google Scholar 

  13. Chesna JW, Smith ST, Hastings DJ, Nowakowski BK, Lin F et al (2012) Development of a micro-scale assembly facility with a three fingered, self-aware assembly tool and electro-chemical etching capabilities. Precis Assem Technol Syst IFIP Adv Inf Commun Technol 371:1–8

    Article  Google Scholar 

  14. Porta M, Tichem M (2010) Grasping and interaction force feedback in microassembly. Precis Assem Technol Syst IFIP Adv Inf Commun Technol 315:199–206

    Article  Google Scholar 

  15. Kohl M, Just E, Pleging W, Miyazaki S (2000) SMA micro gripper with integrated antagonism. Sensors Actuators A Phys 83(1–3):208–213

    Article  Google Scholar 

  16. Kohl M, Krevet B, Just E (2002) SMA micro gripper system. Sensors Actuators A Phys 97–98:646–652

    Article  Google Scholar 

  17. Roch I, Bidaud P, Collard D, Buchaillot L (2003) Fabrication and characterization of an SU-8 gripper actuated by a shape memory alloy thin film. J Micromech Microeng 13(2):330–336

    Article  Google Scholar 

  18. Kyung JH, Ko BG, Ha YH, Chung GJ (2008) Design of micro gripper for micromanipulation of microcomponents using SMA wires and flexible hinges. Sensors Actuators A Phys 141(1):144–150

    Article  Google Scholar 

  19. Lin CM, Fan CH, Lan CC (2009) A shape memory alloy actuated micro gripper with wide handling ranges. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, July14–17, Singapore, ISBN 978-1-4244-2852-6

  20. Daly M, Prequent A et al (2012) Fabrication of a novel laser-processed NiTi shape memory micro gripper with enhanced thermomechanical functionality. J Intell Mater Syst Struct 0:1–7

    Google Scholar 

  21. Li YF, Ho J, Li N (2000) Development of a physically behaved robot work cell in VR for task teaching. Robot Comput Integr Manuf 16(2–3):91–101

    Article  Google Scholar 

  22. Monferrer A, Bonyuet D (2002) Cooperative robot teleoperation through VR interfaces. Proceedings of International Conference on Information Visualization Environments, July 10–12, London, UK, ISBN 0-7695-1656-4

  23. Shen Y, Xi N, Lai K, Li W (2004) Internet-based remote assembly of micro-mechanical-systems (MEMS). Assem Autom 24(3):289–296

    Article  Google Scholar 

  24. Luo Q, Xiao J (2006). Haptic simulation for micro/nano-scale optical fiber assembly. Proceedings of IEEE International Conference on Intelligent Robots and Systems, October 9–15, Beijing, 1353–1358, ISBN 1-4244-0259-X

  25. Reinhart G, Reitar A (2011) An investigation of haptic feedback effects in telepresent microassembly. Prod Eng 5(5):581–586

    Article  Google Scholar 

  26. Estevez P, Mulder A, Schmidt RH (2012) 6-DoF miniature maglev positioning stage for application in haptic micro-manipulation. Mechatronics 22(7):1015–1022

    Article  Google Scholar 

  27. Bolopion A, Stolle C et al (2012) Vision based haptic feedback for remote micromanipulation in a SEM environment. Int J Optomechanics 6(3):236–252

    Article  Google Scholar 

  28. Cecil J, Jones J (2014) An advanced virtual environment for micro assembly. Int J Adv Manuf Technol 72(1):47–56

    Article  Google Scholar 

  29. Probst M, Vollmers K, Kratochvil BE, Nelson BJ (2006) “Design of an advanced microassembly system for the automated assembly of bio-microrobots”, Proc. 5th International Workshop on Microfactories

  30. Probst M, Hürzeler C, Borer R, Nelson BJ (2009) A microassembly system for the flexible assembly of hybrid robotic MEMS devices. Int J Optomechatronics 3(2):69–90

    Article  Google Scholar 

  31. Gopinath N, Cecil J, Powell D (2007) Micro devices assembly using virtual environments. J Intell Manuf 18(3):361–369

    Article  Google Scholar 

  32. Alex J, Vikramaditya B, Nelson B (1998) A VR teleoperator interface for assembly of hybrid MEMS prototypes. Proceedings of DETC’98 ASME Design Engineering Technical Conference, September 13–16, Atlanta, GA

  33. Popa DO, Stephanou HE (2004) Micro and mesoscale robotic assembly. J Manuf Process 6(1):52–71

    Article  Google Scholar 

  34. Cassier C, Ferreira A, Hirai S (2002) Combination of vision servoing techniques and VR-based simulation for semi-autonomous microassembly workstation. Proceedings of the 2002 International Conference on Intelligent Robots and Systems, May 11–15, ISBN 0-7803-7272-7

  35. Ferreira A, Hamdi M (2004) Microassembly planning using physically based models in virtual environment. Proceedings of the 2004 International Conference on Intelligent Robots and Systems, September 28–October 2, 4: 3369–3374, ISBN 0-7803-8463-6

  36. Cecil J, Gobinath N (2005) Development of a virtual and physical work cell to assemble micro-devices. Robot Comput Integr Manuf 21(4–5):431–441

    Article  Google Scholar 

  37. Sun L, Tan F, Rong W, Zhu J (2005) A collision detection approach in virtual environment of micromanipulation robot. High Technol Lett 11(4):371–376

    Google Scholar 

  38. Tan FS, Sun LN, Rong BW, Zhu J, Xu L (2004) Modeling of micromanipulation robot in virtual environment. Actametallurgicasinica(English Letters) 17(2):194–198

    Google Scholar 

  39. Sulzmann A, Breguet JM, Jacot J (1995) Microvision system (MVS): a 3D computer graphic-based microrobot telemanipulation and position feedback by vision. Proceeding of SPIE on Microrobotics and Mechanical Systems 2593:38–49

    Article  Google Scholar 

  40. Liu Z, Chen H (2013) Process simulation of micro device with VR technology. Intell Comput Evol Comput Adv Intell Syst Comput 180:61–65

    Google Scholar 

  41. Zhou Q, Aurelian A et al (2001) A microassembly station with controlled environment. Proc SPIE Microrobotics Microassembly 4568:252–260

    Article  Google Scholar 

  42. Das AN, Murthy R, Popa DO et al (2012) A multiscale assembly and packaging system for manufacturing of complex micro-nano devices. IEEE Trans Autom Sci Eng 9(1):160–170

    Google Scholar 

  43. Mardanov A, Seyfried J, Fatikow S (1999) An automated assembly system for a microassembly station. Comput Ind 38(2):93–102

    Article  Google Scholar 

  44. Chang RJ, Lin CY, Lin PS (2011) Visual-based automation of peg-in-hole microassembly process. ASME J Manuf Sci Eng 133(4):1–12

    Article  Google Scholar 

  45. Estevez P, Khan S, Lambert P, Porta M, Polat I, Scherer C, Tichem M, Staufer U, Langen HH, Schmidt M (2010) A haptic tele-operated system for microassembly. Precis AssemTechnol Syst IFIP Adv Inf Commun Technol 315:13–20

    Article  Google Scholar 

  46. Ruggeri S, Fontana G, Pagano C, Fassi I, Legnani G (2012) Handling and manipulation of microcomponents: work-cell design and preliminary experiments. Precis Assem Technol Syst IFIP Adv Inf Comm Technol 371:65–72

    Article  Google Scholar 

  47. Gendreau D, Gauthier M et al (2010) Modular architecture of the microfactories for automatic micro-assembly. Robotics Comp Int Manuf 26(4):354–360

    Article  Google Scholar 

  48. Gendreau D, Rakotondrabe M, Lutz P (2012) Towards reconfigurable and modular microfactory based on the TRING-module stick–slip microrobot. 8th International Workshop on Microfactories, Tempere, Finland, June 18–20, Accessed on December 21, 2013, http://hal.archives-ouvertes.fr/hal-00719157

  49. Hollis R, Quaid A (1995) An architecture for agile assembly. Proceedings of the American Society of Precision Engineering, Austin, October 15–19, 1995

  50. Cecil J, Huber J, Gobinath N, Jacquess J (2011) A virtual factory environment to support process design in micro assembly domains. Comp Aided Design Appl 8(1):119–127

    Article  Google Scholar 

  51. Saeedi E, Abbasi S, Böhringer KF, Parviz BA (2007) Molten-alloy driven self-assembly for nano and micro scale system integration. Fluid Dyn Mater Process 2(4):221–246

    Google Scholar 

  52. Bogue R (2008) Self-assembly: a review of recent developments. Assembly Automation 28(3):211–215

    Article  Google Scholar 

  53. Fonstad CG Jr, Zahn M (2005) Method and system for magnetically assisted statistical assembly of wafers. US Patent 6:888,178

    Google Scholar 

  54. Ramadan Q, Uk YS, Vaidyanathan K (2007) Large scale microcomponents assembly using an external magnetic array. Appl Phys Lett 90:172502–172503

    Article  Google Scholar 

  55. Rivero R, Shet S, Booty M, Fiory A, Ravindra N (2008) Modeling of magnetic-field-assisted assembly of semiconductor devices. J Electr Mater 37:374–378

    Article  Google Scholar 

  56. Shetye S, Eskinazi I, Arnold D (2010) Magnetic self-assembly of millimeter-scale components with angular orientation. J Microelectromechanical Syst 19:599–609

    Article  Google Scholar 

  57. Shetye SB, Eskinazi I, Arnold DP (2008) Self-assembly of millimeter-scale components using integrated micromagnets. IEEE Trans Magn 44:4293–4296

    Article  Google Scholar 

  58. Grzybowski BA, Stone HA, Whitesides GM (2002) Dynamics of self-assembly of magnetized disks rotating at the liquid-air interface. Proc Natl Acad Sci U S A 99:4147–4151

    Article  Google Scholar 

  59. Iwase E, Shimoyama I (2005) Multi-step sequential batch self-assembly of three-dimensional micro-structures using magnetic field. Proceedings of 18th IEEE International Conference on MEMS 2005, Miami, FL, USA, pp. 588–591

  60. Wang DA, Ko HH (2009) Magnetic-assisted self-assembly of rectangular-shaped parts. Sens Actuat A: Phys 151:195–202

    Article  Google Scholar 

  61. Morris CJ, Isaacson B, Grapes D, Dubey M (2011) Self-assembly of microscale parts through magnetic and capillary interactions. Micromachines 2(1):69–81

    Article  Google Scholar 

  62. Scott KL, Hirano T, Yang H, Singh H, Howe RT, Niknejad AM (2004) High-performance inductors using capillary based fluidic self-assembly. J Microelectromechanical Syst 13:300–309

    Article  Google Scholar 

  63. Srinivasan U, Liepmann D, Howe RT (2001) Microstructure to substrate self-assembly using capillary forces. J Microelectromechan Syst 10:17–24

    Article  Google Scholar 

  64. Srinivasan U, Helmbrecht M, Rembe C, Muller R, Howe R (2002) Fluidic self-assembly of micromirrors onto microactuators using capillary forces. IEEE J Sel Topics Quantum Electr 8:4–11

    Article  Google Scholar 

  65. Xiong X, Hanein Y, Fang J, Wang Y, Schwartz DT, Bohringer KF (2003) Controlled multibatch self-assembly of microdevices. J Microlectromechanical Syst 12(2):117–127

    Article  Google Scholar 

  66. Clark TD, Ferrigno R, Tien J, Paul KE, Whitesides GM (2002) Template-directed self-assembly of 10-μm-sized hexagonal plates. J Am Chem Soc 124:5419–5426

    Article  Google Scholar 

  67. Clark TD, Tien J, Duffy DC, Paul KE, Whitesides GM (2010) Self-assembly of 10-μm-sized objects into ordered three-dimensional arrays. J Am Chem Soc 123:7677–7682

    Article  Google Scholar 

  68. Morris CJ, Ho H, Parviz BA (2006) Liquid polymer deposition on free-standing microfabricated parts for self-assembly. J Microelectromechanical Syst 15:1795

    Article  Google Scholar 

  69. Zheng W, Jacobs HO (2004) Shape-and-solder-directed self-assembly to package semiconductor device segments. Appl Phys Lett 85:3635–3637

    Article  Google Scholar 

  70. Burgard M, Schläfli N, Mai U (2012) Processes for the self-assembly of micro parts. Precision Assem Technol Syst IFIP Adv Inf Comm Technol 371:36–41

    Article  Google Scholar 

  71. Tien J, Terfort A, Whitesides GM (1997) Micro-fabrication through electrostatic self-assembly. Langmuir 13(20):5349–5355

    Article  Google Scholar 

  72. Harsh KF, Bright VM, Lee YC (1999) Solder self-assembly for three-dimensional microelectromechanical systems. Sensors Actuators 77:237–244

    Article  Google Scholar 

  73. Syms RRA (1998) Rotational self-assembly of complex microstructures by the surface tension of glass. Sensors Actuators A 65:238–243

    Article  Google Scholar 

  74. Xi J, Schmidt JJ, Montemagno CD (2005) Self-assembled microdevices driven by muscle. Nat Mater 4:180–184

    Article  Google Scholar 

  75. Sariola V, Jääskeläinen M, Zhou Q (2010) Hybrid microassembly combining robotics and water droplet self-alignment. IEEE Trans Robot 26(6):965–977

    Article  Google Scholar 

  76. Liimatainen V, Zhou Q (2011) Fusion of robotic microassembly and self-assembly. Proceedings of the Microassembly Workshop at IROS 2011, San Francisco, CA.

  77. Gobinath N, Cecil J, Son T (2006) A collaborative system to realize virtual enterprises using 3APL, Agent Languages and Technologies IV. Lect Notes Artificial Intell 4327(2006):191–206

    Google Scholar 

  78. GENI project (2014). The GENI project, www.geni.net (accessed June 2014).

  79. Murthy R, Stephanou HE, Popa DO (2013) AFAM: an articulated four axes microrobot for nanoscale applications. Autom Sci Eng, IEEE Trans 10(2):276–284

    Article  Google Scholar 

  80. Cecil J, Gobinath N (2010) A cyber physical test bed for collaborative micro assembly engineering. Proceedings of the 2010 Collaborative Technologies and Systems (CTS) conference, pp. 430–439, Chicago, May 17–21, 2010

  81. Ye X, Zhang Y, Ru C, Luo J, Xie S, Sun Y (2013) Automated pick-place of silicon nanowires. AutomSci Eng, IEEE Trans 10(3):554–561

    Article  Google Scholar 

  82. Cecil J, Jones J (2014) VREM: an advanced virtual environment for micro assembly. Int J Adv Manuf Technol 72(1–4):47–56

    Article  Google Scholar 

  83. Liu J, Gong Z, Tang K, Lu Z, Ru C, Luo J, Sun Y (2014) Locating end-effector tips in robotic micromanipulation. Robotics, IEEE Trans 30(1):125–130

    Article  Google Scholar 

  84. Cecil J, Gunda R, Calyam P, Seetharam S (2013) A next generation collaborative framework for advanced manufacturing. In Automation Science and Engineering (CASE), 2013 I.E. International Conference on, pp. 128–132, Madison, Aug. 17–20, 2013

  85. US Ignite, https://www.us-ignite.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Cecil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cecil, J., Bharathi Raj Kumar, M.B., Lu, Y. et al. A review of micro-devices assembly techniques and technology. Int J Adv Manuf Technol 83, 1569–1581 (2016). https://doi.org/10.1007/s00170-015-7698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7698-6

Keywords

Navigation