Skip to main content

Advertisement

Log in

A novel Bi-processing technique for metal matrix nanocomposites

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The main problem of reinforcing metal matrix with nanoreinforcements is how can each single nanoreinforcement be well dispersed or/and aligned in a specific location and direction without any agglomeration or randomness. This study presents a novel solid-state Bi-processing technique for forming homogenous metal matrix nanocomposites (MMNCs). In this paper, carbon nanotubes (CNTs) of three weight concentrations were dispersed in precursor carbon polymer solution (PCPS). CNTs/PCPS dispersions were electrospun under optimum electrospinning conditions, and the collected hybrid CNT/precursor carbon nanofibril (CNF) hybrid fabrics were thermally stabilized under a static pressure in two steps to activate its high surface energy aiming to build strong and flexible CNT/CNF hybrid fabrics of 60-MPa strength. The flexible hybrid CNT/CNF fabrics were then placed in fine grooves that were machined in pure aluminum metal substrate. Then, friction stir process (FSP) was applied to produce aligned and well-dispersed CNT/CNF hybrid fabrics in aluminum matrix. Morphological characterization by using scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM) were conducted. Also, tensile and micro-hardness properties were evaluated in detail. The results proved the possibility of producing MMNCs by using Bi-processing technique (electrospinning and FSP) for the first time in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali AA, El-Hamid MA (2006) Electro-spinning optimization for precursor carbon nano fibers. J Compos A 37:1681–1687

    Article  Google Scholar 

  2. Rutledge GC, Fridrikh SV (2007) Formation of fibers by electrospinning. Adv Drug Deliv 59:1384–1391

    Article  Google Scholar 

  3. Yordem OS, Papila M, Menceloglu YZ (2008) Effect of electrospinning parameters on polyacrylonitrile nanofibers diameter: an investigation by response surface methodology. Mater Des 29:34–44

    Article  Google Scholar 

  4. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425

    Article  Google Scholar 

  5. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Advancements 28:325–347

    Article  Google Scholar 

  6. Wang X, Ding B, Sun G, Wang M, Yu J (2013) Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog Mater Sci 58:1173–1243

    Article  Google Scholar 

  7. Ali AA (2008) New generation of super absorber nano fibroses hybrid fabric by electro-spinning. Mater Process Technol 199:193–198

    Article  Google Scholar 

  8. Ko F, Gogotsi Y, Ali AA, Naguib N, Ye H, Yang G et al (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15:1161–1165

    Article  Google Scholar 

  9. Mack J, Viculis L, Ali AA, Luoh R, Yang G, Hahn T et al (2005) Graphite nanoplatelet reinforcement of electrospun polyacrylonitrile nanofibers. Adv Mater 17:77–80

    Article  Google Scholar 

  10. Ali AA, Rutledge GC (2009) Hot-pressed electrospun PAN nanofibers: an idea for flexible carbon mat. Mater Process Technol 209:4617–4620

    Article  Google Scholar 

  11. Dingreville R, Qu J, Cherkaoui M (2005) Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids 53:1827–1854

    Article  MATH  MathSciNet  Google Scholar 

  12. Nanda KK, Maisels A, Kruis FE, Fissan H, Stappert S (2003) Highersurface energy of free nanoparticles. Phys Rev Lett 91(10):106102, -1-4

    Article  Google Scholar 

  13. Ji-H H, Wan Y-Q, Xu L (2007) Nano-effects, quantum-like properties in electrospun nanofibers. Chaos Solitons Fractals 33:26–37

    Article  Google Scholar 

  14. Guillou CL, Brunet F, Irifune T, Ohfuji H, Rouzaud JN (2007) Nanodiamond nucleation below 2273 K at 15 GPa from carbons with different structural organizations. Carbon 45:636–648

    Article  Google Scholar 

  15. Sun LT, Gong JL, Zhu ZY, Zhu DZ, Wang ZX, Zhang W et al (2005) Synthesis and characterization of diamond nanowires from carbon nanotubes. Diam Relat Mater 14:749–752

    Article  Google Scholar 

  16. Ali AA, Al-Asmari KA (2012) Wet electrospun CuNP/carbon nanofibril composites: potential application for micro surface mounted components. J Appl Nanosci 2:55–61

    Article  Google Scholar 

  17. Ali AA (2014) A novel 3-D graphite structure from thermally stabilized electrospun MWCNTs/PAN nanofibril composite fabrics. Int J Adv Manuf Technol 70:1731–1738

    Article  Google Scholar 

  18. Devaraju A, Kumar A, Kotiveerachari B (2013) Influence of rotational speed and reinforcements on wear and mechanical properties of aluminum hybrid composites via friction stir processing. Mater Des 45:576–585

    Article  Google Scholar 

  19. Gupta M, Mohamed FA, Lavernia EJ (1990) Solidification behaviour of Al–Li–SiCp MMCs processed using variable co-deposition of multi-phase materials. Mater Manuf Process 5(2):165–196

    Article  Google Scholar 

  20. Mabhali LAB, Pityana SL, Sacks N (2010) Laser surface alloying of aluminum (AA1200) with Ni and SiC powders. Mater Manuf Process 25(12):1397–1403

    Article  Google Scholar 

  21. Mishra RS, Ma ZY, Charit I (2003) Friction stir processing: a novel technique for fabrication of surface composites. Mater Sci Eng A 341:307–310

    Article  Google Scholar 

  22. Ma ZY (2008) Friction stir processing technology: a review. Metall Mater Trans A 39:642–658

    Article  Google Scholar 

  23. Asadi P, Besharati Givi MK, Faraji G (2010) Producing ultrafine-grained AZ91 from as cast AZ91 by FSP. Mater Manuf Process 25(11):1219–1226

    Article  Google Scholar 

  24. Dehghani K, Mazinani M (2011) Forming nanocrystalline surface layers in copper using friction stir processing. Mater Manuf Process 26(07):922–925

    Article  Google Scholar 

  25. Devaraju A, Kumar A (2011) Dry sliding wear and static immersion corrosion resistance of aluminum alloy 6061-T6/SiCp metal matrix composite prepared via friction stir processing. Int J Adv Res Mech Eng 1(2):62–68

    Google Scholar 

  26. Ma ZY, Sharma SR, Mishra RS (2006) Microstructural modification of as-cast Al–Si–Mg alloy by friction stir processing. Metall Mater Trans A 37:3233–3236

    Article  Google Scholar 

  27. Sharma SR, Mishra RS (2008) Fatigue crack growth behavior of friction stir processed aluminum alloy. Scr Mater 59:395–398

    Article  Google Scholar 

  28. Mishra RS, Z Y. M (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78

    Article  MATH  Google Scholar 

  29. Choi D-H, Kim Y-I, Kim D-U, Jung S-B (2012) Effect of SiC particles on microstructure and mechanical property of friction stir processed AA6061-T4. Trans Nonferrous Metals Soc China 22:614–618

    Article  Google Scholar 

  30. Mishra RS, Ma ZY, Charit I (2003) Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng A 341(1–2):307–310

    Article  Google Scholar 

  31. Mishra RS, Mahoney MW, McFadden SX, Mara NA, Mukherjee AK (2000) High strain rate super plasticity in a friction stir processed 7075 Al alloy [J]. Scr Mater 42(2):163–168

    Article  Google Scholar 

  32. Salehi M, Saadatmand M, Aghazadeh Mohandesi J (2012) Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing. Trans Nonferrous Metals Soc China 22:1055–1063

    Article  Google Scholar 

  33. Mazaheri Y, Karimzadeh F, Enayati MH (2011) A novel technique for development of A356/Al2O3 surface nanocomposite by friction stir processing. J Mater Process Technol 211:1614–1619

    Article  Google Scholar 

  34. Ali AA, Eldesouky RA, Zoalfakar HS (2014) Mechanical and tribological properties of hot-pressed electrospun MWCNTs/carbon nanofibril composite fabrics. Int J Adv Manuf Technol 74:983–993

    Article  Google Scholar 

  35. Mishra RS, Mahoney MW (2007) Friction stir welding and processing, Copyright © 2007 ASM International®, DOI:10.1361/fswp editors, p 1–5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf A. Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A.A., El-Meniawi, M.A.H. & Khafagi, S.M. A novel Bi-processing technique for metal matrix nanocomposites. Int J Adv Manuf Technol 78, 907–915 (2015). https://doi.org/10.1007/s00170-014-6699-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6699-1

Keywords

Navigation