Skip to main content

Advertisement

Log in

Microtexture fabrication on cylindrical metallic surfaces and its application to a rotor-bearing system

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A process to fabricate large-scale three-dimensional microstructures for cylindrical objects is developed by employing the techniques of pre-treatment, coating, rolling exposure, and electrochemical micromachining (EMM). In this work, the rolling exposure technique is advanced and used to fabricate a patterned photoresist mask. Several experiments are implemented to understand the dependence of the microtexture morphology on the EMM process. The various electrochemical mechanisms involved in the EMM process are discussed in detail. Furthermore, the texture surfaces are introduced into a rotor-bearing system and demonstrated a 64 % reduction in the vibrations, improving the stability for the first time. The results of the present study demonstrate the feasibility of using through-mask EMM for producing high-precision topographies on cylindrical objects, and that the application of surface textures in the rotor-bearing system is practical. The technique developed in this study is expected to lead to enhancements in roll-based manufacturing and automotive tribology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kligerman Y, Etsion I (2001) Analysis of the hydrodynamic effects in a surface textured circumferential gas seal. Tribol Trans 44(3):472–478

    Article  Google Scholar 

  2. Vilhena LM, Sedlacek M, Podgornik B, Vizintin J, Babnik A, Mozina J (2009) Surface texturing by pulsed Nd: YAG laser. Tribol Int 42(10):1496–1504

    Article  Google Scholar 

  3. Byun JW, Shin HS, Kwon MH, Kim BH, Chu CN (2010) Surface texturing by micro ECM for friction reduction. Int J Precis Eng Manuf 11(5):747–753

    Article  Google Scholar 

  4. Choi JH, Kim GM (2011) Micro-patterning on non-planar surface using flexible microstencil. Int J Precis Eng Manuf 12(1):165–168

    Article  Google Scholar 

  5. Kim JG, Takama N, Kim BJ, Fujita H (2009) Optical-soft lithographic technology for patterning on curved surfaces. J Micromech Microeng 19(5):8, 055017

    Google Scholar 

  6. Gupta MC, Li B, Gadag S, Chou KC (2010) Laser micromachining for fatigue and fracture mechanics applications. Opt Lasers Eng 48(4):441–447

    Article  Google Scholar 

  7. Zeman R, Bleicher F, Zisser-Pfeifer R (2012) Some practical contributions of the technology of electrochemical micromachining with ultra short pulses. Galvanotechnik 103(4):722–5

    Google Scholar 

  8. Marcinkevicius A, Juodkazis S, Watanabe M, Miwa M, Matsuo S, Misawa H, Nishii J (2001) Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26(5):277–279

    Article  Google Scholar 

  9. Gattass RR, Mazur E (2008) Femtosecond laser micromachining in transparent materials. Nat Photonics 2(4):219–225

    Article  Google Scholar 

  10. Li X, Bohn PW (2000) Metal-assisted chemical etching in HF/H(2)O(2) produces porous silicon. Appl Phys Lett 77(16):2572–2574

    Article  Google Scholar 

  11. Moszner N, Salz U, Zimmermann J (2005) Chemical aspects of self-etching enamel-dentin adhesives: a systematic review. Dent Mater 21(10):895–910

    Article  Google Scholar 

  12. Qian BT, Shen ZQ (2005) Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir 21(20):9007–9009

    Article  Google Scholar 

  13. Bae WG, Song KY, Rahmawan Y, Chu CN, Kim D, Chung do K, Suh KY (2012) One-step process for superhydrophobic metallic surfaces by wire electrical discharge machining. ACS Appl Mater Interfaces 4(7):3685–3691

    Article  Google Scholar 

  14. Balasubramaniam R, Krishnan J, Ramakrishnan N (2002) A study on the shape of the surface generated by abrasive jet machining. J Mater Process Technol 121(1):102–106

    Article  Google Scholar 

  15. Ghobeity A, Getu H, Krajac T, Spelt JK, Papini M (2007) Process repeatability in abrasive jet micro-machining. J Mater Process Technol 190(1–3):51–60

    Article  Google Scholar 

  16. Ephrath LM (1979) Selective etching of silicon dioxide using reactive ion etching with CF4-H2. J Electrochem Soc 126(8):1419–1421

    Article  Google Scholar 

  17. Tachi S, Tsujimoto K, Okudaira S (1988) Low-temperature reactive ion etching and microwave plasma-etching of silicon. Appl Phys Lett 52(8):616–618

    Article  Google Scholar 

  18. Shaw KA, Zhang ZL, Macdonald NC (1994) Scream i: a single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures. Sensors Actuators A-Phys 40(1):63–70

    Article  Google Scholar 

  19. Lammertink RGH, Hempenius MA, van den Enk JE, Chan VZH, Thomas EL, Vancso GJ (2000) Nanostructured thin films of organic-organometallic block copolymers: one-step lithography with poly(ferrocenylsilanes) by reactive ion etching. Adv Mater 12(2):98–103

    Article  Google Scholar 

  20. Mineta T (2004) Basic characteristics of an electrochemical etching of Ni-Fe containing corrosion resistant alloys. Sensors Actuators A-Phys 114(2–3):536–542

    Article  Google Scholar 

  21. Datta M, Harris D (1997) Electrochemical micromachining: an environmentally friendly, high speed processing technology. Electrochim Acta 42(20–22):3007–3013

    Article  Google Scholar 

  22. Bhattacharyya B, Munda J, Malapati M (2004) Advancement in electrochemical micro-machining. Int J Mach Tools Manuf 44(15):1577–1589

    Article  Google Scholar 

  23. Lee ES, Park JW, Moon YH (2002) A study on electrochemical micromachining for fabrication of microgrooves in an air-lubricated hydrodynamic bearing. Int J Adv Manuf Technol 20(10):720–726

    Article  Google Scholar 

  24. Munda J, Bhattacharyya B (2008) Investigation into electrochemical micromachining (EMM) through response surface methodology based approach. Int J Adv Manuf Technol 35(7–8):821–832

    Article  Google Scholar 

  25. Spieser A, Ivanov A (2013) Recent developments and research challenges in electrochemical micromachining (A mu ECM). Int J Adv Manuf Technol 69(1–4):563–581

    Article  Google Scholar 

  26. Jiang LM, Li W, Attia A, Cheng ZY, Tang J, Tian ZQ, Tian ZW (2008) A potential method for electrochemical micromachining of titanium alloy Ti6Al4V. J Appl Electrochem 38(6):785–791

    Article  Google Scholar 

  27. Tang J, Zhang L, Tian X (2010) Micromachining on copper and nickel by electrochemical wet stamping. J Micromech Microeng 20(11):115030

    Article  Google Scholar 

  28. Kern P, Veh J, Michler J (2007) New developments in through-mask electrochemical micromachining of titanium. J Micromech Microeng 17(6):1168–1177

    Article  Google Scholar 

  29. Dar-Yuan C, Ping-Chen S, Jung-Chou H, Shuo-Jen L, Hai-Ping T (2012) Process simulation-assisted fabricating micro-herringbone grooves for a hydrodynamic bearing in electrochemical micromachining. Mater Manuf Process 26(12):1451–1458

    Google Scholar 

  30. Hong Shik S, Bo Hyun K, Chong Nam C (2008) Analysis of the side gap resulting from micro electrochemical machining with a tungsten wire and ultrashort voltage pulses. J Micromech Microeng 18(7):6, 075009

    Google Scholar 

  31. Lee ES, Baek SY, Cho CR (2007) A study of the characteristics for electrochemical micromachining with ultrashort voltage pulses. Int J Adv Manuf Technol 31(7–8):762–769

    Google Scholar 

  32. Lee ES, Baek SY, Lee JT (2009) Characteristics for electrochemical machining with nanoscale voltage pulses. J Nanosci Nanotechnol 9(6):3424–3432

    Article  Google Scholar 

  33. Maurer JJ, Hudson JL, Fick SE, Moffat TP, Shaw GA (2012) Electrochemical micromachining of NiTi shape memory alloys with ultrashort voltage pulses. Electrochem Solid State Lett 15(2):D8–D10

    Article  Google Scholar 

  34. Gherca A, Fatu A, Hajjam M, Maspeyrot P (2013) Influence of surface geometry on the hydrodynamic performances of parallel bearings in transient flow conditions. Tribol Trans 56(6):953–967

    Article  Google Scholar 

  35. Gherca AR, Gherca AR, Maspeyrot P, Hajjam M, Fatu A (2013) Influence of texture geometry on the hydrodynamic performances of parallel bearings. Tribol Trans 56(3):321–332

    Article  Google Scholar 

  36. Rahmani R, Rahmani R, Mirzaee I, Shirvani A, Shirvani H (2010) An analytical approach for analysis and optimisation of slider bearings with infinite width parallel textures. Tribol Int 43(8):1551–1565

    Article  Google Scholar 

  37. Scaraggi M (2012) Textured surface hydrodynamic lubrication: discussion. Tribol Lett 48(3):375–391

    Article  Google Scholar 

  38. Tauviqirrahman M, Ismail R, Jamari J, Schipper DJ (2013) A study of surface texturing and boundary slip on improving the load support of lubricated parallel sliding contacts. Acta Mech 224(2):365–381

    Article  MATH  MathSciNet  Google Scholar 

  39. Traore MM, Wang L (2013) Influences of the flow speed and the micro-texture deepness on the hydrodynamic lubrication characteristics. J Comput Theor Nanosci 10(2):419–422

    Article  Google Scholar 

  40. Wahl R, Schneider J, Gumbsch P (2012) Influence of the real geometry of the protrusions in micro textured surfaces on frictional behaviour. Tribol Lett 47(3):447–453

    Article  Google Scholar 

  41. Tang W, Zhou YK, Zhu H, Yang HF (2013) The effect of surface texturing on reducing the friction and wear of steel under lubricated sliding contact. Appl Surf Sci 273:199–204

    Article  Google Scholar 

  42. Rao TVVLN, Rani AMA, Nagarajan T, Hashim FM (2012) Analysis of slider and journal bearing using partially textured slip surface. Tribol Int 56:121–128

    Article  Google Scholar 

  43. Rao TVVLN, Rani AMA, Nagarajan T, Hashim FM (2014) Analysis of couple stress fluid lubricated partially textured slip slider and journal bearing using narrow groove theory. Tribol Int 69:1–9

    Article  Google Scholar 

  44. Sinanoglu C (2009) Investigation of load carriage capacity of journal bearings by surface texturing. Ind Lubr Tribol 61(5):261–270

    Article  Google Scholar 

  45. Sinanoglu C, Nair F, Goeksen E (2008) Effect of micro and macro pits of journal surface on radial pressure distribution of journal bearing. Ind J Eng Mater Sci 15(4):300–310

    Google Scholar 

  46. Hao XQ, Wang L, Wang QD, Guo FL, Tang YP, DingmYC LBH (2011) Surface micro-texturing of metallic cylindrical surface with proximity rolling-exposure lithography and electrochemical micromachining. Appl Surf Sci 257(21):8906–8911

    Article  Google Scholar 

  47. Wang L, Wang QD, Hao XQ, Ding YC, Lu BH (2010) Finite element simulation and experimental study on the through-mask electrochemical micromachining (EMM) process. Int J Adv Manuf Technol 51(1–4):155–162

    Google Scholar 

  48. de Silva AKM, McGeough JA (1998) Process monitoring of electrochemical micromachining. J Mater Process Technol 76(1–3):165–169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuqing Hao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, X., Pei, S., Wang, L. et al. Microtexture fabrication on cylindrical metallic surfaces and its application to a rotor-bearing system. Int J Adv Manuf Technol 78, 1021–1029 (2015). https://doi.org/10.1007/s00170-014-6648-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6648-z

Keywords

Navigation