Skip to main content
Log in

Static patella tilt and axial engagement in knee extension are mainly influenced by knee torsion, the tibial tubercle–trochlear groove distance (TTTG), and trochlear dysplasia but not by femoral or tibial torsion

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The aim of this study was to investigate the association of femoral (FT), tibial (TT), and knee torsion (KT) on the patella tilt (PT), the axial engagement index (AEI), and the tibial tuberosity–trochlear groove distance (TTTG).

Methods

Femoral torsion, tibial torsion, knee torsion, patella tilt, the axial engagement index, the TTTG, and trochlear dysplasia were retrospectively evaluated on 59 patients suffering from recurrent patella instability or anterior knee pain with 118 torsional lower limb magnetic resonance imaging studies.

Results

FT and TT did not show any significant associations with TTTG, PT, and AEI (n.s.). KT was significantly associated with a higher TTTG, higher PT, and lower AEI (all, p < 0.001). Higher grade trochlear dysplasia was associated with a higher PT and lower AEI (both, p < 0.001). The Dejour classification showed no significant association with FT, TT, KT, and TTTG (n.s.). All measurement parameters showed an excellent interrater agreement (ICC 0.89–0.97).

Conclusions

Static patella tilt and patellofemoral axial engagement in knee extension are mainly influenced by knee torsion, TTTG, and trochlear dysplasia but not by femoral or tibial torsion. These findings help to understand the underlying reasons for the patella position in knee extensions in CT and MRI investigations in patients suffering from patella instability and patellofemoral pain syndrome.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

FT:

Femoral torsion

TT:

Tibial torsion

KT:

Knee torsion

PT:

Patellar tilt

AEI:

Axial engagement

TTTG:

Tibial tuberosity–trochlear groove distance

References

  1. Abadie P, Galaud B, Michaut M, Fallet L, Boisrenoult P, Beaufils P (2009) Distal femur rotational alignment and patellar subluxation: a CT scan in vivo assessment. Orthop Traumatol Surg Res 95:267–271

    Article  CAS  PubMed  Google Scholar 

  2. Airanow S, Zippel H (1990) Femoro-tibial torsion in patellar instability. A contribution to the pathogenesis of recurrent and habitual patellar dislocations. Beitr Orthop Traumatol 37:311–316

    CAS  PubMed  Google Scholar 

  3. Askenberger M, Janarv PM, Finnbogason T, Arendt EA (2017) Morphology and anatomic patellar instability risk factors in first-time traumatic lateral patellar dislocations. Am J Sports Med 45:50–58

    Article  PubMed  Google Scholar 

  4. Balcarek P, Oberthur S, Hopfensitz S, Frosch S, Walde TA, Wachowski MM et al (2014) Which patellae are likely to redislocate? Knee Surg Sports Traumatol Arthrosc 22:2308–2314

    Article  PubMed  Google Scholar 

  5. Balcarek P, Radebold T, Schulz X, Vogel D (2019) Geometry of torsional malalignment syndrome: trochlear dysplasia but not torsion predicts lateral patellar instability. Orthop J Sports Med 7:2325967119829790

    Article  PubMed  PubMed Central  Google Scholar 

  6. Balcarek P, Terwey A, Jung K, Walde TA, Frosch S, Schuttrumpf JP et al (2013) Influence of tibial slope asymmetry on femoral rotation in patients with lateral patellar instability. Knee Surg Sports Traumatol Arthrosc 21:2155–2163

    Article  PubMed  Google Scholar 

  7. Biedert RM (2008) Osteotomies. Orthopade 37:872

    Article  CAS  PubMed  Google Scholar 

  8. Chassaing V, Zeitoun JM, Camara M, Blin JL, Marque S, Chancelier MD (2017) Tibial tubercle torsion, a new factor of patellar instability. Orthop Traumatol Surg Res 103:1173–1178

    Article  CAS  PubMed  Google Scholar 

  9. Dejour D, Le Coultre B (2007) Osteotomies in patello-femoral instabilities. Sports Med Arthrosc 15:39–46

    Article  PubMed  Google Scholar 

  10. Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2:19–26

    Article  CAS  PubMed  Google Scholar 

  11. Dickschas J, Harrer J, Pfefferkorn R, Strecker W (2012) Operative treatment of patellofemoral maltracking with torsional osteotomy. Arch Orthop Trauma Surg 132:289–298

    Article  PubMed  Google Scholar 

  12. Diederichs G, Kohlitz T, Kornaropoulos E, Heller MO, Vollnberg B, Scheffler S (2013) Magnetic resonance imaging analysis of rotational alignment in patients with patellar dislocations. Am J Sports Med 41:51–57

    Article  PubMed  Google Scholar 

  13. Eckhoff DG, Brown AW, Kilcoyne RF, Stamm ER (1997) Knee version associated with anterior knee pain. Clin Orthop Relat Res 339:152–155

    Article  Google Scholar 

  14. Eckhoff DG, Montgomery WK, Kilcoyne RF, Stamm ER (1994) Femoral morphometry and anterior knee pain. Clin Orthop Relat Res 302:64–68

    Google Scholar 

  15. Erkocak OF, Altan E, Altintas M, Turkmen F, Aydin BK, Bayar A (2016) Lower extremity rotational deformities and patellofemoral alignment parameters in patients with anterior knee pain. Knee Surg Sports Traumatol Arthrosc 24:3011–3020

    Article  PubMed  Google Scholar 

  16. Fleiss J (1986) The design and analysis of clinical experiments. Wiley, New Yoek

    Google Scholar 

  17. Freedman BR, Sheehan FT (2013) Predicting three-dimensional patellofemoral kinematics from static imaging-based alignment measures. J Orthop Res 31:441–447

    Article  PubMed  Google Scholar 

  18. Fucentese SF (2018) Patellofemoral instability. Orthopade 47:77–86

    Article  CAS  PubMed  Google Scholar 

  19. Fulkerson JP, Schutzer SF, Ramsby GR, Bernstein RA (1987) Computerized tomography of the patellofemoral joint before and after lateral release or realignment. Arthroscopy 3:19–24

    Article  CAS  PubMed  Google Scholar 

  20. Grelsamer RP, Weinstein CH, Gould J, Dubey A (2008) Patellar tilt: the physical examination correlates with MR imaging. Knee 15:3–8

    Article  PubMed  Google Scholar 

  21. Guilbert S, Chassaing V, Radier C, Hulet C, Remy F, Chouteau J et al (2013) Axial MRI index of patellar engagement: a new method to assess patellar instability. Orthop Traumatol Surg Res 99:S399–S405

    Article  CAS  PubMed  Google Scholar 

  22. Hinterwimmer S, Rosenstiel N, Lenich A, Waldt S, Imhoff AB (2012) Femoral osteotomy for patellofemoral instability. Unfallchirurg 115:410–416

    Article  CAS  PubMed  Google Scholar 

  23. Iliadis AD, Jaiswal PK, Khan W, Johnstone D (2012) The operative management of patella malalignment. Open Orthop J 6:327–339

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jend HH, Heller M, Dallek M, Schoettle H (1981) Measurement of tibial torsion by computer tomography. Acta Radiol Diagn (Stockh) 22:271–276

    Article  CAS  Google Scholar 

  25. Kaiser P, Attal R, Kammerer M, Thauerer M, Hamberger L, Mayr R et al (2016) Significant differences in femoral torsion values depending on the CT measurement technique. Arch Orthop Trauma Surg 136:1259–1264

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kaiser P, Schmoelz W, Schoettle P, Zwierzina M, Heinrichs C, Attal R (2017) Increased internal femoral torsion can be regarded as a risk factor for patellar instability—a biomechanical study. Clin Biomech (Bristol, Avon) 47:103–109

    Article  Google Scholar 

  27. Laugharne E, Bali N, Purushothamdas S, Almallah F, Kundra R (2016) Variability of measurement of patellofemoral indices with knee flexion and quadriceps contraction: an MRI-based anatomical study. Knee Surg Relat Res 28:297–301

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liebensteiner MC, Ressler J, Seitlinger G, Djurdjevic T, El Attal R, Ferlic PW (2016) High femoral anteversion is related to femoral trochlea dysplasia. Arthroscopy 32:2295–2299

    Article  PubMed  Google Scholar 

  29. Lin YF, Jan MH, Lin DH, Cheng CK (2008) Different effects of femoral and tibial rotation on the different measurements of patella tilting: an axial computed tomography study. J Orthop Surg Res 3:5

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liodakis E, Doxastaki I, Chu K, Krettek C, Gaulke R, Citak M et al (2012) Reliability of the assessment of lower limb torsion using computed tomography: analysis of five different techniques. Skelet Radiol 41:305–311

    Article  Google Scholar 

  31. Nelitz M (2018) Femoral derotational osteotomies. Curr Rev Musculoskelet Med 11:272–279

    Article  PubMed  PubMed Central  Google Scholar 

  32. Petersen W, Ellermann A, Gosele-Koppenburg A, Best R, Rembitzki IV, Bruggemann GP et al (2014) Patellofemoral pain syndrome. Knee Surg Sports Traumatol Arthrosc 22:2264–2274

    Article  PubMed  Google Scholar 

  33. Post WR, Teitge R, Amis A (2002) Patellofemoral malalignment: looking beyond the viewbox. Clin Sports Med 21:521–546

    Article  PubMed  Google Scholar 

  34. Powers CM (2003) The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. J Orthop Sports Phys Ther 33:639–646

    Article  PubMed  Google Scholar 

  35. Powers CM, Shellock FG, Pfaff M (1998) Quantification of patellar tracking using kinematic MRI. J Magn Reson Imaging 8:724–732

    Article  CAS  PubMed  Google Scholar 

  36. Saggin PR, Saggin JI, Dejour D (2012) Imaging in patellofemoral instability: an abnormality-based approach. Sports Med Arthrosc Rev 20:145–151

    Article  PubMed  Google Scholar 

  37. Seitlinger G, Scheurecker G, Hogler R, Labey L, Innocenti B, Hofmann S (2012) Tibial tubercle-posterior cruciate ligament distance: a new measurement to define the position of the tibial tubercle in patients with patellar dislocation. Am J Sports Med 40:1119–1125

    Article  PubMed  Google Scholar 

  38. Souza RB, Draper CE, Fredericson M, Powers CM (2010) Femur rotation and patellofemoral joint kinematics: a weight-bearing magnetic resonance imaging analysis. J Orthop Sports Phys Ther 40:277–285

    Article  PubMed  Google Scholar 

  39. Takagi S, Sato T, Watanabe S, Tanifuji O, Mochizuki T, Omori G et al (2018) Alignment in the transverse plane, but not sagittal or coronal plane, affects the risk of recurrent patella dislocation. Knee Surg Sports Traumatol Arthrosc 26:2891–2898

    Article  PubMed  Google Scholar 

  40. Teitge RA (2006) Osteotomy in the treatment of patellofemoral instability. Tech Knee Surg 5:2–18

    Article  Google Scholar 

  41. Thomas S, Rupiper D, Stacy GS (2014) Imaging of the patellofemoral joint. Clin Sports Med 33:413–436

    Article  PubMed  Google Scholar 

  42. Van Haver A, De Roo K, De Beule M, Labey L, De Baets P, Dejour D et al (2015) The effect of trochlear dysplasia on patellofemoral biomechanics: a cadaveric study with simulated trochlear deformities. Am J Sports Med 43:1354–1361

    Article  PubMed  Google Scholar 

  43. Waidelich HA, Strecker W, Schneider E (1992) Computed tomographic torsion-angle and length measurement of the lower extremity. The methods, normal values and radiation load. Rofo 157:245–251

    Article  CAS  PubMed  Google Scholar 

  44. Waldt S, Rummeny EJ (2012) Imaging of patellofemoral instability. Radiologe 52:1003–1011

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

There were no funding sources.

Author information

Authors and Affiliations

Authors

Contributions

All authors stated on the manuscript were fully involved in evaluating the study and writing the manuscript.

Corresponding author

Correspondence to R. Attal.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Institutional review board approval was granted by means of a general waiver for scientific studies with retrospective data analysis (Local research ethics committee, Medical University Innsbruck; 20th February 2009).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaiser, P., Loth, F., Attal, R. et al. Static patella tilt and axial engagement in knee extension are mainly influenced by knee torsion, the tibial tubercle–trochlear groove distance (TTTG), and trochlear dysplasia but not by femoral or tibial torsion. Knee Surg Sports Traumatol Arthrosc 28, 952–959 (2020). https://doi.org/10.1007/s00167-019-05588-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-019-05588-y

Keywords

Navigation