Skip to main content
Log in

Peak stresses shift from femoral tunnel aperture to tibial tunnel aperture in lateral tibial tunnel ACL reconstructions: a 3D graft-bending angle measurement and finite-element analysis

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

A Correction to this article was published on 08 December 2017

This article has been updated

Abstract

Purpose

To investigate the effect of tibial tunnel orientation on graft-bending angle and stress distribution in the ACL graft.

Methods

Eight cadaveric knees were scanned in extension, 45°, 90°, and full flexion. 3D reconstructions with anatomically placed anterior cruciate ligament (ACL) grafts were constructed with Mimics 14.12®. 3D graft-bending angles were measured for classic medial tibial tunnels (MTT) and lateral tibial tunnels (LTT) with different drill-guide angles (DGA) (45°, 55°, 65°, and 75°). A pivot shift was performed on 1 knee in a finite-element analysis. The peak stresses in the graft were calculated for eight different tibial tunnel orientations.

Results

In a classic anatomical ACL repair, the largest graft-bending angle and peak stresses are seen at the femoral tunnel aperture. The use of a different DGA at the tibial side does not change the graft-bending angle at the femoral side or magnitude of peak stresses significantly. When using LTT, the largest graft-bending angles and peak stresses are seen at the tibial tunnel aperture.

Conclusion

In a classic anatomical ACL repair, peak stresses in the ACL graft are found at the femoral tunnel aperture. When an LTT is used, peak stresses are similar compared to classic ACL repairs, but the location of the peak stress will shift from the femoral tunnel aperture towards the tibial tunnel aperture. Clinical relevance: the risk of graft rupture is similar for both MTTs and LTTs, but the location of graft rupture changes from the femoral tunnel aperture towards the tibial tunnel aperture, respectively.

Level of evidence

I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(reprinted with permission from Arthroscopy, 2012 Jun; 28(6):818–826)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 08 December 2017

    Unfortunately, one of the co-author’s name was missed in the original online publication of this article. The name should be included as sixth author in the author group.

References

  1. Desai N, Andernord D, Sundemo D, Alentorn-Geli E, Musahl V, Fu F, Forssblad M, Samuelsson K (2017) Revision surgery in anterior cruciate ligament reconstruction: a cohort study of 17,682 patients from the Swedish National Knee Ligament Register. Knee Surg Sports Traumatol Arthrosc 25:1542–1554

    Article  PubMed  Google Scholar 

  2. Ferretti A, Monaco E, Caperna L, Palma T, Conteduca F (2013) Revision ACL reconstruction using contralateral hamstrings. Knee Surg Sports Traumatol Arthrosc 21(3):690–695

    Article  PubMed  Google Scholar 

  3. Kamath GV, Redfern JC, Greis PE, Burks RT (2011) Revision anterior cruciate ligament reconstruction. Am J Sports Med 39(1):199–217

    Article  PubMed  Google Scholar 

  4. Group MARS, Ding DY, Zhang AL et al (2017) Subsequent surgery after revision anterior cruciate ligament reconstruction: rates and risk factors from a multicenter cohort. Am J Sports Med 45:2068–2076

    Article  Google Scholar 

  5. Group MARS, Allen CR, Anderson AF et al (2017) Surgical predictors of clinical outcomes after revision anterior cruciate ligament reconstruction. Am J Sports Med. doi:10.1177/0363546517712952

    Google Scholar 

  6. Maletis GB, Chen J, Inacio MCS, Love RM, Funahashi TT (2017) Increased risk of revision after anterior cruciate ligament reconstruction with soft tissue allografts compared with autografts: graft processing and time make a difference. Am J Sports Med 45:1837–1844

    Article  PubMed  Google Scholar 

  7. Hettrich CM, Dunn WR, Reinke EK; MOON Group, Spindler KP (2013) The rate of subsequent surgery and predictors after anterior cruciate ligament reconstruction: two- and 6-year follow-up results from a multicentre cohort. Am J Sports Med 41(7):1534–1540

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lind M, Menhert F, Pedersen AB (2012) Incidence and outcome after revision anterior cruciate ligament reconstruction: results from the Danish registry for knee ligament reconstructions. Am J Sports Med 40(7):1551–1557

    Article  PubMed  Google Scholar 

  9. Pallis M, Svoboda SJ, Cameron KL, Owens BD (2012) Survival comparison of allograft and autograft anterior cruciate ligament reconstruction at the United States Military Academy. Am J Sports Med 40(6):1242–1246

    Article  PubMed  Google Scholar 

  10. Grassi A, Kim C, Marcheggiani Muccioli GM, Zaffagnini S, Amendola A (2017) what is the mid-term failure rate of revision ACL reconstruction? A systematic review. Clin Orthop Relat Res. doi:10.1007/s11999-017-5379-5

    PubMed  Google Scholar 

  11. Lefevre N, Klouche S, Mirouse G, Herman S, Gerometta A, Bohu Y (2017) Return to sport after primary and revision anterior cruciate ligament reconstruction: a prospective comparative study of 552 patients from the FAST cohort. Am J Sports Med 45:34–41

    Article  PubMed  Google Scholar 

  12. Neumann RD, Brown DE (2004) Orthopedic secrets, 3rd edn. Hanley & Belfus, Elsevier, Philadelphia, PA Chapter 72, Anterior Cruciate ligament injuries

    Google Scholar 

  13. George MS, Dunn WR, Spindler KP (2006) Current concepts review: revision anterior cruciate ligament reconstruction. Am J Sports Med 34:2026–2037

    Article  PubMed  Google Scholar 

  14. Ménétrey J, Duthon VB, Laumonier T, Fritschy D (2008) “Biological failure” of the anterior cruciate ligament graft. Knee Surg Sports Traumatol Arthrosc 16(3):224–231

    Article  PubMed  Google Scholar 

  15. Carson EW, Anisko EM, Restrepo C, Panariello RA, O’Brien SJ, Warren RF (2004) Revision anterior cruciate ligament reconstruction: etiology of failures and clinical results. J Knee Surg 17:127–132

    Article  PubMed  Google Scholar 

  16. Chen JL, Allen CR, Stephens TE, Haas AK, Huston LJ, Wright RW, Feeley BT (2013) Multicenter ACL Revision Study (MARS) Group. Differences in mechanisms of failure, intraoperative findings, and surgical characteristics between single- and multiple-revision ACL reconstructions: a MARS cohort study. Am J Sports Med 41:1571–1578

    Article  PubMed  Google Scholar 

  17. Herbenick M, Gambardella R (2008) Revision anterior cruciate ligament reconstruction using a unique bioabsorbable interference screw for malpositioned tunnels. Am J Orthop (Belle Mead NJ) 37:425–428

    Google Scholar 

  18. Maletis GB, Chen J, Inacio MCS, Love RM, Funahashi TT (2017) Increased risk of revision after anterior cruciate ligament reconstruction with bone-patellar tendon-bone allografts compared with autografts. Am J Sports Med 45:1333–1340

    Article  PubMed  Google Scholar 

  19. Hosseini A, Lodhia P, Van de Velde SK, Asnis PD, Zarins B, Gill TJ, Li G (2012) Tunnel position and graft orientation in failed anterior cruciate ligament reconstruction: a clinical and imaging analysis. Int Orthop 36:845–852

    Article  PubMed  Google Scholar 

  20. Marchant BG, Noyes FR, Barber-Westin SD, Fleckenstein C (2010) Prevalence of non-anatomical graft placement in a series of failed anterior cruciate ligament reconstructions. Am J Sports Med 38(10):1987–1996

    Article  PubMed  Google Scholar 

  21. Trojani C, Sbihi A, Djian P, Potel JF, Hulet C, Jouve F, Bussière C, Ehkirch FP, Burdin G, Dubrana F, Beaufils P, Franceschi JP, Chassaing V, Colombet P, Neyret P (2011) Causes for failure of ACL reconstruction and influence of meniscectomies after revision. Knee Surg Sports Traumatol Arthrosc 19(2):196–201

    Article  PubMed  Google Scholar 

  22. Ciccotti MC, Secrist E, Tjoumakaris F, Ciccotti MG, Freedman KB (2017) Anatomic anterior cruciate ligament reconstruction via independent tunnel drilling: a systematic review of randomized controlled trials comparing patellar tendon and hamstring autografts. Arthroscopy; 33:1062–1071

    Article  PubMed  Google Scholar 

  23. Duffee A, Magnussen RA, Pedroza AD, Flanigan DC; MOON Group, Kaeding CC (2013) Transtibial ACL femoral tunnel preparation increases odds of repeat ipsilateral knee surgery. J Bone Joint Surg Am 20;95:2035–2042

    Article  Google Scholar 

  24. Sirleo L, Innocenti M, Innocenti M, Civinini R, Carulli C, Matassi F (2017) Post-operative 3D CT feedback improves accuracy and precision in the learning curve of anatomic ACL femoral tunnel placement. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-017-4614-7

    Google Scholar 

  25. Grassi A, Nitri M, Moulton SG, Marcheggiani Muccioli GM, Bondi A, Romagnoli M, Zaffagnini S (2017) Does the type of graft affect the outcome of revision anterior cruciate ligament reconstruction? A meta-analysis of 32 studies. Bone Joint J 99:714–723

    Article  PubMed  Google Scholar 

  26. Magnussen RA, Taylor DC, Toth AP, Garrett WE (2012) ACL graft failure location differs between allografts and autografts. Sports Med Arthrosc Rehabil Ther Technol 14;4(1):22

    Article  Google Scholar 

  27. van Eck CF1, Kropf EJ, Romanowski JR, Lesniak BP, Tranovich MJ, van Dijk CN, Fu FH (2011) Factors that influence the intra-articular rupture pattern of the ACL graft following single-bundle reconstruction. Knee Surg Sports Traumatol Arthrosc 19:1243–1248

    Article  PubMed  PubMed Central  Google Scholar 

  28. Van der Bracht H, Verhelst L, Goubau Y, Fieuws S, Verdonk P, Bellemans J (2012) The lateral tibial tunnel in revision anterior cruciate ligament surgery: a biomechanical study of a new technique. Arthroscopy 28(6):818–826

    Article  PubMed  Google Scholar 

  29. Van der Bracht H, Verhelst L, Stuyts B, Page B, Bellemans J, Verdonk P (2014) Anatomic single-bundle ACL surgery: consequences of tibial tunnel diameter and drill-guide angle on tibial footprint coverage. Knee Surg Sports Traumatol Arthrosc 22(5):1030–1039

    PubMed  Google Scholar 

  30. Van Der Bracht H, Cloete G, Page B, Scheffer C, Bellemans J, Verdonk P (2012) The lateral tibial tunnel: does it allow for adequate fixation in ACL surgery? Acta Orthop Belg Oct 78:637–642

    Google Scholar 

  31. Feigl G, Fuchs A, Gries M, Hogan QH, Weninger B, Rosmarin W (2006) A supraomohyoidal plexus block designed to avoid complications. Surg Radiol Anat 28:403–408

    Article  CAS  PubMed  Google Scholar 

  32. Park HS, Ahn C, Fung DT, Ren Y, Zhang LQ (2010) A knee-specific finite element analysis of the human anterior cruciate ligament impingement against the femoral intercondylar notch. J Biomech 20;43(10):2039–2042

    Article  Google Scholar 

  33. Van Hoof T, Cromheecke M, Tampere T, D’herde K, Victor J, Verdonk PC (2013) The posterior cruciate ligament: a study on its bony and soft tissue anatomy using novel 3D CT technology Knee Surg. Sports Traumatol Arthrosc 21(5):1005–1010

    Article  Google Scholar 

  34. Van Hoof T, Gomes GT, Audenaert E, Verstraete K, Kerckaert I, D’Herde K (2008) 3D computerized model for measuring strain and displacement of the brachial plexus following placement of reverse shoulder prosthesis. Anat Rec (Hoboken) 291:1173–1185

    Article  Google Scholar 

  35. De Maeseneer M, Jager T, Vanderdood K, Van Roy P, Shahabpour M, Marcelis S (2003) Ultrasound during dissection of cadaveric specimens: a new method for obtaining ultrasound-anatomic correlations in musculoskeletal radiology. Eur Radiol 14:870–874

    Article  Google Scholar 

  36. Forsythe B, Harner C, Martins CA, Shen W, Lopes OV Jr, Fu FH (2009) Topography of the femoral attachment of the posterior cruciate ligament. Surgical technique. J Bone Joint Surg Am 91(1):89–100

    Article  PubMed  Google Scholar 

  37. Schillhammer CK, Reid JB 3rd, Rister J, Jani SS, Marvil SC, Chen AW, Anderson CG, D’Agostino S, Lubowitz JH (2016) Arthroscopy up to date: anterior cruciate ligament anatomy. Arthroscopy 32(1):209–212

    Article  PubMed  Google Scholar 

  38. Tampere T, Van Hoof T, Cromheecke M, Van der Bracht H, Chahla J, Verdonk P, Victor J (2017) The anterior cruciate ligament: a study on its bony and soft tissue anatomy using novel 3D CT technology. Knee Surg Sports Traumatol Arthrosc 25:236–244

    Article  PubMed  Google Scholar 

  39. Saveh AH, Katouzian HR, Chizari M (2011) Measurement of an intact knee kinematics using gait and fluoroscopic analysis. Knee Surg Sports Traumatol Arthrosc 19:267–272

    Article  PubMed  Google Scholar 

  40. Johnson RA (2007) advanced euclidean geometry. DoverPublications, New York

    Google Scholar 

  41. Kopf S, Martin DE, Tashman S, Fu FH (2010) Effect of tibial drill angles on bone tunnel aperture during anterior cruciate ligament reconstruction. J Bone Joint Surg Am 92(4):871–881

    Article  PubMed  Google Scholar 

  42. Xie F, Yang L, Guo L, Wang ZJ, Dai G (2009) A study on construction three-dimensional nonlinear finite element model and stress distribution analysis of anterior cruciate ligament. J Biomech Eng 131(12):121007

    Article  PubMed  Google Scholar 

  43. Bischoff JE (2008) Advanced material modelling in a virtual biomechanical knee in 2008. Abaqus Users’ Conference Newport, Rhode Island USA

    Google Scholar 

  44. Bull AMJ, Amis AA (1998) The pivot-shift phenomenon: a clinical and biomechanical perspective. Knee 3:141–158

    Article  Google Scholar 

  45. Kim JG, Wang JH, Lim HC, Ahn JH (2012) Femoral graft bending angle and femoral tunnel geometry of transportal and outside-in techniques in anterior cruciate ligament reconstruction: an in vivo 3-dimensional computed tomography analysis. Arthroscopy 28(11):1682–1694

    Article  PubMed  Google Scholar 

  46. Rahr-Wagner L, Thillemann TM, Pedersen AB, Lind MC (2013) Increased risk of revision after anteromedial compared with transtibial drilling of the femoral tunnel during primary anterior cruciate ligament reconstruction: results from the Danish Knee Ligament Reconstruction Register. Arthroscopy 29:98–105

    Article  PubMed  Google Scholar 

  47. Smolinski P, O’Farrell M, Bell K, Gilbertson L, Fu FH (2013) Effect of ACL reconstruction tunnels on stress in the distal femur. Knee Surg Sports Traumatol Arthrosc 21(4):839–845

    Article  CAS  PubMed  Google Scholar 

  48. Tompkins M, Cosgrove CT, Milewski MD, Brockmeier SF, Hart JM, Miller MD (2013) Anterior cruciate ligament reconstruction femoral tunnel characteristics using an accessory medial portal versus traditional transtibial drilling. Arthroscopy 29:550–555

    Article  PubMed  Google Scholar 

  49. Tompkins M, Keller TC, Milewski MD, Gaskin CM, Brockmeier SF, Hart JM, Miller MD (2013) Anatomic femoral tunnels in posterior cruciate ligament reconstruction: inside-out versus outside-in drilling. Am J Sports Med 41:43–50

    Article  PubMed  Google Scholar 

  50. Claes S, Verdonk P, Forsyth R, Bellemans J (2011) The “ligamentization” process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature. Am J Sports Med 39(11):2476–2483

    Article  PubMed  Google Scholar 

  51. Hamilton SC, Jackson ER 2nd, Karas SG (2011) Anterior cruciate ligament femoral tunnel drilling through anteromedial portal: axial plane drill angle affects tunnel length. Arthroscopy 27:522–525

    Article  PubMed  Google Scholar 

  52. Larson AI, Bullock DP, Pevny T (2012) Comparison of 4 femoral tunnel drilling techniques in anterior cruciate ligament reconstruction. Arthroscopy 28(7):972–979

    Article  PubMed  Google Scholar 

  53. Takeda Y, Iwame T, Takasago T, Kondo K, Goto T, Fujii K, Naruse A (2013) Comparison of tunnel orientation between transtibial and anteromedial portal techniques for anatomic double-bundle anterior cruciate ligament reconstruction using 3-dimensional computed tomography. Arthroscopy 29(2):195–204

    Article  PubMed  Google Scholar 

  54. Kim JG, Chang MH, Lim HC, Bae JH, Ahn JH, Wang JH (2013) Computed tomography analysis of the femoral tunnel position and aperture shape of transportal and outside-in ACL reconstruction: do different anatomic reconstruction techniques create similar femoral tunnels? Am J Sports Med 41(11):2512–2520

    Article  PubMed  Google Scholar 

  55. Branam BR, Hasselfeld KA (2013) “Retrograde technique” for drilling the femoral tunnel in an anterior cruciate ligament reconstruction. Arthrosc Tech 10;2:395–399

    Article  Google Scholar 

  56. Dai X, Cai Y (2012) Measurement of anterior cruciate ligament angles in single-bundle reconstruction using the anteromedial portal. Am J Orthop (Belle Mead NJ) 41(6):268–272

    Google Scholar 

  57. Ferraz V, Westerberg P, Brand JC (2013) Anterior cruciate ligament femoral socket drilling with a retrograde reamer: lessons from the learning curve. Arthrosc Tech 7(4):389–393 2)

    Article  Google Scholar 

  58. Kim SJ, Shin JW, Lee CH, Shin HJ, Kim SH, Jeong JH, Lee JW (2005) Biomechanical comparisons of three different tibial tunnel directions in posterior cruciate ligament reconstruction. Arthroscopy 21(3):286–293

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The computational resources (Stevin Supercomputer Infrastructure) and services used for the finite-element study were provided by Ghent University, the Hercules Foundation and the Flemish Government—department EWI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Beekman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Funding

The authors received no financial support for the research, authorship, and/or this article.

Ethical approval

In these testaments is stated that the human body can be implemented in educational or research programs with no further specification. The body donation program guarantees high ethical standards during implementation of the human body in the different projects.

Informed consent

In the Ghent Anatomical Facility informed consent for anatomical study is given as people voluntary sign up for the body donation program.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s00167-017-4821-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Der Bracht, H., Tampere, T., Beekman, P. et al. Peak stresses shift from femoral tunnel aperture to tibial tunnel aperture in lateral tibial tunnel ACL reconstructions: a 3D graft-bending angle measurement and finite-element analysis. Knee Surg Sports Traumatol Arthrosc 26, 508–517 (2018). https://doi.org/10.1007/s00167-017-4739-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-017-4739-8

Keywords

Navigation