Skip to main content
Log in

Three-dimensional isotropic magnetic resonance imaging can provide a reliable estimate of the native anterior cruciate ligament insertion site anatomy

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

This study quantified the error in anterior cruciate ligament (ACL) insertion site location and area estimated from three-dimensional (3D) isotropic magnetic resonance imaging (MRI) by comparing to native insertion sites determined via 3D laser scanning.

Methods

Isotropic 3D DESS MRI was acquired from twelve fresh-frozen, ACL-intact cadaver knees. ACL insertion sites were manually outlined in each MRI slice, and the resulting contours combined to determine the 3D insertion site shape. Specimens were then disarticulated, and the boundaries of the ACL insertion sites were digitized using a high-accuracy laser scanner. MRI and laser scan insertion sites were co-registered to determine the percent overlapping area and difference in insertion centroid location.

Results

Femoral ACL insertion site area averaged 112.7 ± 17.9 mm2 from MRI and 109.7 ± 10.9 mm2 from laser scan (p = 0.345). Tibial insertion area was 134.7 ± 22.9 mm2 from MRI and 135.2 ± 15.1 mm2 from laser scan (p = 0.881). Percentages of overlapping area between modalities were 82.2 ± 10.2% for femurs and 81.0 ± 9.0% for tibias. The root-mean-square differences for ACL insertion site centroids were 1.87 mm for femurs and 2.49 mm for tibias. The MRI-estimated ACL insertion site centroids were biased on average 0.6 ± 1.6 mm proximally and 0.3 ± 1.9 mm posteriorly for femurs, and 0.3 ± 1.1 mm laterally and 0.5 ± 1.5 mm anteriorly for tibias.

Conclusion

Errors in ACL insertion site location and area estimated from 3D-MRI were determined via comparison with a high-accuracy 3D laser scanning. Results indicate that MRI can provide estimates of ACL insertion site area and centroid location with clinically applicable accuracy. MRI-based assessment can provide a reliable estimate of the native ACL anatomy, which can be helpful for surgical planning as well as assessment of graft tunnel placement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abebe ES, Moorman CT 3rd, Dziedzic TS, Spritzer CE, Cothran RL, Taylor DC, Garrett WE Jr, DeFrate LE (2009) Femoral tunnel placement during anterior cruciate ligament reconstruction: an in vivo imaging analysis comparing transtibial and 2-incision tibial tunnel-independent techniques. Am J Sports Med 37(10):1904–1911

    Article  PubMed  Google Scholar 

  2. Abebe ES, Utturkar GM, Taylor DC, Spritzer CE, Kim JP, Moorman CT 3rd, Garrett WE, DeFrate LE (2011) The effects of femoral graft placement on in vivo knee kinematics after anterior cruciate ligament reconstruction. J Biomech 44(5):924–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dargel J, Feiser J, Gotter M, Pennig D, Koebke J (2009) Side differences in the anatomy of human knee joints. Knee Surg Sports Traumatol Arthrosc 17(11):1368–1376

    Article  PubMed  Google Scholar 

  4. Edwards A, Bull AM, Amis AA (2008) The attachments of the anteromedial and posterolateral fibre bundles of the anterior cruciate ligament. Part 2: femoral attachment. Knee Surg Sports Traumatol Arthrosc 16(1):29–36

    Article  PubMed  Google Scholar 

  5. Fu FH, Musahl V (2013) Anatomic ACL reconstruction. Clin Sports Med 32(1):xv–xvi

    Article  PubMed  Google Scholar 

  6. Han Y, Kurzencwyg D, Hart A, Powell T, Martineau PA (2012) Measuring the anterior cruciate ligament’s footprints by three-dimensional magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 20(5):986–995

    Article  PubMed  Google Scholar 

  7. Harner CD, Irrgang JJ, Paul J, Dearwater S, Fu FH (1992) Loss of motion after anterior cruciate ligament reconstruction. Am J Sports Med 20(5):499–506

    Article  CAS  PubMed  Google Scholar 

  8. Ichiba A, Kido H, Tokuyama F, Makuya K, Oda K (2014) Sagittal view of the tibial attachment of the anterior cruciate ligament on magnetic resonance imaging and the relationship between anterior cruciate ligament size and the physical characteristics of patients. J Orthop Sci 19(1):97–103

    Article  PubMed  Google Scholar 

  9. Kato Y, Maeyama A, Lertwanich P, Wang JH, Ingham SJ, Kramer S, Martins CQ, Smolinski P, Fu FH (2013) Biomechanical comparison of different graft positions for single-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21(4):816–823

    Article  PubMed  Google Scholar 

  10. Mae T, Shino K, Matsumoto N, Hamada M, Yoneda M, Nakata K (2007) Anatomical two-bundle versus Rosenberg’s isometric bi-socket ACL reconstruction: a biomechanical comparison in laxity match pretension. Knee Surg Sports Traumatol Arthrosc 15(4):328–334

    Article  PubMed  Google Scholar 

  11. Miranda DL, Rainbow MJ, Leventhal EL, Crisco JJ, Fleming BC (2010) Automatic determination of anatomical coordinate systems for three-dimensional bone models of the isolated human knee. J Biomech 43(8):1623–1626

    Article  PubMed  PubMed Central  Google Scholar 

  12. Murawski CD, van Eck CF, Irrgang JJ, Tashman S, Fu FH (2014) Operative treatment of primary anterior cruciate ligament rupture in adults. J Bone Joint Surg Am 96(8):685–694

    Article  PubMed  Google Scholar 

  13. Sasaki N, Ishibashi Y, Tsuda E, Yamamoto Y, Maeda S, Mizukami H, Toh S, Yagihashi S, Tonosaki Y (2012) The femoral insertion of the anterior cruciate ligament: discrepancy between macroscopic and histological observations. Arthroscopy 28(8):1135–1146

    Article  PubMed  Google Scholar 

  14. Scanlan SF, Lai J, Donahue JP, Andriacchi TP (2012) Variations in the three-dimensional location and orientation of the ACL in healthy subjects relative to patients after transtibial ACL reconstruction. J Orthop Res 30(6):910–918

    Article  PubMed  Google Scholar 

  15. Shahmiri R, Aarts JM, Bennani V, Atieh MA, Swain MV (2013) Finite element analysis of an implant-assisted removable partial denture. J Prosthodont 22(7):550–555

    Article  PubMed  Google Scholar 

  16. Smigielski R, Zdanowicz U, Drwiega M, Ciszek B, Ciszkowska-Lyson B, Siebold R (2015) Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surg Sports Traumatol Arthrosc 23(11):3143–3150

    Article  PubMed  Google Scholar 

  17. Staeubli HU, Adam O, Becker W, Burgkart R (1999) Anterior cruciate ligament and intercondylar notch in the coronal oblique plane: anatomy complemented by magnetic resonance imaging in cruciate ligament-intact knees. Arthroscopy 15(4):349–359

    Article  CAS  PubMed  Google Scholar 

  18. Swami VG, Cheng-Baron J, Hui C, Thompson R, Jaremko JL (2013) Reliability of estimates of ACL attachment locations in 3-dimensional knee reconstruction based on routine clinical MRI in pediatric patients. Am J Sports Med 41(6):1319–1329

    Article  PubMed  Google Scholar 

  19. Swami VG, Cheng-Baron J, Hui C, Thompson RB, Jaremko JL (2015) Reliability of 3D localisation of ACL attachments on MRI: comparison using multi-planar 2D versus high-resolution 3D base sequences. Knee Surg Sports Traumatol Arthrosc 23(4):1206–1214

    Article  PubMed  Google Scholar 

  20. Swami VG, Mabee M, Hui C, Jaremko JL (2014) MRI anatomy of the tibial ACL attachment and proximal epiphysis in a large population of skeletally immature knees: reference parameters for planning anatomic physeal-sparing ACL reconstruction. Am J Sports Med 42(7):1644–1651

    Article  PubMed  Google Scholar 

  21. Tanaka Y, Shiozaki Y, Yonetani Y, Kanamoto T, Tsujii A, Horibe S (2011) MRI analysis of the attachment of the anteromedial and posterolateral bundles of anterior cruciate ligament using coronal oblique images. Knee Surg Sports Traumatol Arthrosc 19(Suppl 1):S54–S59

    Article  PubMed  Google Scholar 

  22. Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32(4):975–983

    Article  PubMed  Google Scholar 

  23. Tsukada S, Fujishiro H, Watanabe K, Nimura A, Mochizuki T, Mahakkanukrauh P, Yasuda K, Akita K (2014) Anatomic variations of the lateral intercondylar ridge: relationship to the anterior margin of the anterior cruciate ligament. Am J Sports Med 42(5):1110–1117

    Article  PubMed  Google Scholar 

  24. Viste A, Trouillet F, Testa R, Cheze L, Desmarchelier R, Fessy MH (2014) An evaluation of CT-scan to locate the femoral head centre and its implication for hip surgeons. Surg Radiol Anat 36(3):259–263

    Article  PubMed  Google Scholar 

  25. Yasuda K, Tanabe Y, Kondo E, Kitamura N, Tohyama H (2010) Anatomic double-bundle anterior cruciate ligament reconstruction. Arthroscopy 26(9 Suppl):S21–S34

    Article  PubMed  Google Scholar 

  26. Yasuda K, van Eck CF, Hoshino Y, Fu FH, Tashman S (2011) Anatomic single- and double-bundle anterior cruciate ligament reconstruction, part 1: basic science. Am J Sports Med 39(8):1789–1799

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Tashman.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest directly relevant to the content of this article.

Funding

This study was funded by a Pittsburgh Foundation Grant (M2012-0022).

Ethical approval

The committee for oversight of research and clinical training involving decedents has reviewed and approved the above-referenced study.

Informed consent

Not applicable in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araki, D., Thorhauer, E. & Tashman, S. Three-dimensional isotropic magnetic resonance imaging can provide a reliable estimate of the native anterior cruciate ligament insertion site anatomy. Knee Surg Sports Traumatol Arthrosc 26, 1311–1318 (2018). https://doi.org/10.1007/s00167-017-4560-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-017-4560-4

Keywords

Navigation