Skip to main content

Advertisement

Log in

Sagittal view of the tibial attachment of the anterior cruciate ligament on magnetic resonance imaging and the relationship between anterior cruciate ligament size and the physical characteristics of patients

  • Original Article
  • Published:
Journal of Orthopaedic Science

Abstract

Background

It is necessary to create bone tunnels within the native footprint during anatomic anterior cruciate ligament (ACL) reconstruction. Predicting the size of the ACL preoperatively may be useful in order to determine the diameter of the bone tunnels preoperatively or during surgery. The tibial insertion site of the ACL includes a depressed area, the ACL fovea, which is generally observed in the sagittal view on magnetic resonance imaging (MRI). The purposes of this study were to measure the anteroposterior diameter of the ACL fovea in the sagittal view on MRI and to investigate its associations with the physical characteristics of patients.

Methods

One hundred patients (100 knees; 50 males and 50 females; mean age, 33 years) were included in this study. The anteroposterior diameter of the ACL fovea was measured in the sagittal view on MRI. The relationships between the diameter of the ACL fovea and physical characteristics including height, weight, and body mass index (BMI) were analyzed.

Results

The mean diameter of the ACL fovea was 16.1 mm in male patients and 14.3 mm in female patients, which were comparable to the previously reported values. There were significant positive correlations between the diameter of the ACL fovea and height and weight, but not BMI. The number of knees in which the diameter of the ACL fovea was <13 mm was 14 (14 %), and females were more likely to have ACL fovea diameter <13 mm.

Conclusions

The study indicated that it is possible to predict the size of the ACL before surgery by measuring the diameter of the ACL fovea on MRI. Physical characteristics of patients correlated with the diameter of the ACL fovea. Especially in female patients, it is important to consider the size of the ACL preoperatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Van Eck CF, Kopf S, Irrgang JJ, Blankevoort L, Bhandari M, Fu FH, Poolman RW. Single-bundle versus double-bundle reconstruction for anterior cruciate ligament rupture: a meta-analysis — does anatomy matter? Arthroscopy. 2012;28:405–24.

    Article  PubMed  Google Scholar 

  2. Xu M, Gao S, Zeng C, Han R, Sun J, Li H, Xiong Y, Lei G. Outcomes of anterior cruciate ligament reconstruction using single-bundle versus double-bundle technique: meta-analysis of 19 randomized controlled trials. Arthroscopy. 2013;29:357–65.

    Article  PubMed  Google Scholar 

  3. Lehmann AK, Osada N, Zantop T, Raschke MJ, Petersen W. Femoral bridge stability in double-bundle ACL reconstruction: impact of bridge width and different fixation techniques on the structural properties of the graft/femur complex. Arch Orthop Trauma Surg. 2009;129:1127–32.

    Article  PubMed  Google Scholar 

  4. Petersen W, Tretow H, Weimann A, Herbort M, Fu FH, Raschke M, Zantop T. Biomechanical evaluation of two techniques for double-bundle anterior cruciate ligament reconstruction. One tibial tunnel versus two tibial tunnels. Am J Sports Med. 2007;35:228–34.

    Article  PubMed  Google Scholar 

  5. Fujimoto E, Sumen Y, Deie M, Yasumoto M, Kobayashi K, Ochi M. Anterior cruciate ligament graft impingement against the posterior cruciate ligament: diagnosis using MRI plus three-dimensional reconstructed software. Magn Reson Imaging. 2004;22:1125–9.

    Article  PubMed  Google Scholar 

  6. Goss BC, Hull ML, Howell SM. Contact pressure and tension in anterior cruciate ligament grafts subjected to roof impingement during passive extension. J Orthop Res. 1997;15:263–8.

    Article  CAS  PubMed  Google Scholar 

  7. Hwang MD, Piefer JW, Lubowitz JM. Anterior cruciate ligament tibial footprint anatomy. Systematic review of the 21st century literature. Arthroscopy. 2012;28:728–34.

    Article  PubMed  Google Scholar 

  8. Kopf S, Pombo MW, Szczodry M, Irrang JJ, Fu FH. Size variability of the human anterior cruciate ligament insertion site. Am J Sports Med. 2011;39:108–13.

    Article  PubMed  Google Scholar 

  9. Colombet P, Robinson J, Christel P, Franceschi JP, Djian P, Bellier G, Sbihi A. Morphology of anterior cruciate ligament attachments for anatomic reconstruction: a cadaveric dissection and radiographic study. Arthroscopy. 2006;22:984–92.

    Article  PubMed  Google Scholar 

  10. Doi M, Takahashi M, Abe M, Suzuki D, Nagano A. Lateral radiographic study of the tibial sagittal insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 2009;17:347–51.

    Article  PubMed  Google Scholar 

  11. Edwards A, Bull AMJ, Aims AA. The attachments of the anteromedial and posterolateral fibre bundles of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 2007;15:1414–21.

    Article  PubMed  Google Scholar 

  12. Girgis FG, Marshall J, Monajem ARS. The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop. 1975;106:216–31.

    Article  PubMed  Google Scholar 

  13. Hara K, Mochizuki T, Sekiya I, Yamaguchi K, Akita K, Muneta T. Anatomy of normal human anterior cruciate ligament attachments evaluated by divided small bundles. Am J Sports Med. 2009;37:2386–91.

    Article  PubMed  Google Scholar 

  14. Jackobsen K. Area intercondylaris tibiae: osseous surface structure and its relation to soft tissue structures and applications to radiography. J Anat. 1974;3:605–18.

    Google Scholar 

  15. Jackson DW, Gasser SI. Tibial placement in ACL reconstruction. Arthroscopy. 1994;10:124–31.

    Article  CAS  PubMed  Google Scholar 

  16. Lorenz S, Elser F, Mitterer M, Obst T, Imhoff AB. Radiologic evaluation of the insertion sites of the 2 functional bundles of the anterior cruciate ligament using 3-dimensional computed tomography. Am J Sports Med. 2009;37:2368–76.

    Article  PubMed  Google Scholar 

  17. Purnell ML, Larson AI, Clancy W. Anterior cruciate ligament insertions on the tibia and femur and their relationships to critical bony landmarks using high-resolution volume-rendering computed tomography. Am J Sports Med. 2008;36:2083–90.

    Article  PubMed  Google Scholar 

  18. Siebold R, Ellert T, Metz S, Metz J. Tibial insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry, arthroscopic landmarks, and orientation model for bone tunnel placement. Arthroscopy. 2008;2:154–61.

    Article  Google Scholar 

  19. Staübli HU, Rauschning W. Tibial attachment area of the anterior cruciate ligament in the extended knee position. Anatomy and cryosections in vitro complemented by magnetic resonance arthrography in vivo. Knee Surg Sports Traumatol Arthrosc. 1994;2:138–46.

    Article  PubMed  Google Scholar 

  20. Takahashi M, Doi M, Abe M, Suzuki D, Nagano A. Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. Am J Sports Med. 2006;34:787–92.

    Article  PubMed  Google Scholar 

  21. Tállay A, Lim MH, Barrtlett J. Anatomical study of the human anterior cruciate ligament stump’s tibial insertion footprint. Knee Surg Sports Traumatol Arthrosc. 2008;16:741–6.

    Article  PubMed  Google Scholar 

  22. Tsukada H, Ishibashi Y, Tsuda E, Fukuda A, Toh S. Anatomical analysis of the anterior cruciate ligament femoral and tibial footprints. J Orthop Sci. 2008;13:122–9.

    Article  PubMed  Google Scholar 

  23. Zantop T, Wellman M, Fu FH, Petersen W. Tunnel positioning of anteromedial and posterolateral bundles in anatomic anterior cruciate ligament reconstruction. Anatomic and radiographic findings. Am J Sports Med. 2008;36:65–72.

    Article  PubMed  Google Scholar 

  24. Parsons FG. Observations of the head of the tibia. J Anat Physiol. 1906;41:83–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Arnoczky SP. Blood supply to the anterior cruciate ligament and supporting structures. Orthop Clin North Am. 1985;16:15–28.

    CAS  PubMed  Google Scholar 

  26. Cuomo P, Edwards A, Giron F, Bull AM, Amis AA, Aglietti P. Validation of the 65 degrees Howell guide for anterior cruciate ligament reconstruction. Arthroscopy. 2006;22:70–5.

    Article  PubMed  Google Scholar 

  27. Iriuchijima T, Tajima G, Ingham SJM, Shen W, Smolinski P, Fu FH. Impingement pressure in the anatomical and nonanatomical anterior cruciate ligament reconstruction. A cadaver study. Am J Sports Med. 2010;38:1611–7.

    Article  Google Scholar 

  28. Kopf S, Martin DE, Tashman S, Fu FH. Effect of tibial drill angles on bone tunnel aperture during anterior cruciate ligament reconstruction. J Bone Joint Surg Am. 2010;92:871–81.

    Article  PubMed  Google Scholar 

  29. Hussein M, van Eck CF, Cretnik A, Dinevski D, Fu FH. Individualized anterior cruciate ligament surgery. A prospective study comparing anatomic single- and double-bundle reconstruction. Am J Sports Med. 2012;40:1781–8.

    Article  PubMed  Google Scholar 

  30. Anderson AF, Dome DC, Gautam S, Awh MH, Rennirt GW. Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med. 2001;29:58–66.

    CAS  PubMed  Google Scholar 

  31. Charlton WPH, John TA, Ciccotti MG, Harrison N, Schweitzer M. Differences in femoral notch anatomy between men and women. A magnetic resonance imaging study. Am J Sports Med. 2002;30:329–33.

    PubMed  Google Scholar 

  32. Chandrashekar N, Slauterbeck J, Hashemi J. Sex-based differences in the anthropometric characteristics of the anterior cruciate ligament and its relation to intercondylar notch geometry. A cadaveric study. Am J Sports Med. 2005;33:1492–8.

    Article  PubMed  Google Scholar 

  33. Wu E, Chen M, Cooperman D, Victoroff B, Goodfellow D, Farrow L. No correlation of height or gender with anterior cruciate ligament footprint size. J Knee Surg. 2011;24:39–43.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

All authors declare that no grants, funds or benefits of any kind were received in support of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Ichiba.

About this article

Cite this article

Ichiba, A., Kido, H., Tokuyama, F. et al. Sagittal view of the tibial attachment of the anterior cruciate ligament on magnetic resonance imaging and the relationship between anterior cruciate ligament size and the physical characteristics of patients. J Orthop Sci 19, 97–103 (2014). https://doi.org/10.1007/s00776-013-0479-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00776-013-0479-x

Keywords

Navigation