Skip to main content
Log in

Bone marrow lesions and subchondral bone pathology of the knee

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Bone marrow lesions (BMLs) around the knee are a common magnetic resonance imaging (MRI) finding. However, despite the growing interest on BMLs in multiple pathological conditions, they remain controversial not only for the still unknown role in the etiopathological processes, but also in terms of clinical impact and treatment. The differential diagnosis includes a wide range of conditions: traumatic contusion and fractures, cyst formation and erosions, hematopoietic and infiltrated marrow, developmental chondroses, disuse and overuse, transient bone marrow oedema syndrome and, lastly, subchondral insufficiency fractures and true osteonecrosis. Regardless the heterogeneous spectrum of these pathologies, a key factor for patient management is the distinction between reversible and irreversible conditions. To this regard, MRI plays a major role, leading to the correct diagnosis based on recognizable typical patterns that have to be considered together with coexistent abnormalities, age, and clinical history. Several treatment options have been proposed, from conservative to surgical approaches. In this manuscript the main lesion patterns and their management have been analysed to provide the most updated evidence for the differential diagnosis and the most effective treatment.

Level of evidence IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Aglietti P, Insall JN, Buzzi R, Deschamps G (1983) Idiopathic osteonecrosis of the knee. Aetiology, prognosis and treatment. J Bone Joint Surg Br 65(5):588–597

    CAS  PubMed  Google Scholar 

  2. Ahlback S, Bauer GC, Bohne WH (1968) Spontaneous osteonecrosis of the knee. Arthritis Rheum 11(6):705–733

    Article  CAS  PubMed  Google Scholar 

  3. Aktan AO, Buyukgebiz O, Yegen C, Yalcin SH, Haklar G, Yalin R, Ercan S (1994) Does PGE2 act as a mediator for endothelin release? Prostaglandins Leukot Essent Fatty Acids 50(1):37–41

    Article  CAS  PubMed  Google Scholar 

  4. Baier C, Schaumburger J, Gotz J, Heers G, Schmidt T, Grifka J, Beckmann J (2013) Bisphosphonates or prostacyclin in the treatment of bone-marrow oedema syndrome of the knee and foot. Rheumatol Int 33(6):1397–1402

    Article  CAS  PubMed  Google Scholar 

  5. Bartl C, Imhoff A, Bartl R (2012) Treatment of bone marrow edema syndrome with intravenous ibandronate. Arch Orthop Trauma Surg 132(12):1781–1788

    Article  PubMed  Google Scholar 

  6. Bergman A, Brandt I, Darnerud PO, Wachtmeister CA (1982) Metabolism of 2,2′,5,5′-tetrachlorobiphenyl: formation of mono- and bis-methyl sulphone metabolites with a selective affinity for the lung and kidney tissues in mice. Xenobiotica 12(1):1–7

    Article  CAS  PubMed  Google Scholar 

  7. Blair TR, Schweitzer M, Resnick D (1999) Meniscal cysts causing bone erosion: retrospective analysis of seven cases. Clin Imaging 23(2):134–138

    Article  CAS  PubMed  Google Scholar 

  8. Brandser EA, Riley MA, Berbaum KS, El-Khoury GY, Bennett DL (1996) MR imaging of anterior cruciate ligament injury: independent value of primary and secondary signs. Am J Roentgenol (AJR) 167(1):121–126

    Article  CAS  Google Scholar 

  9. Bretlau T, Tuxoe J, Larsen L, Jorgensen U, Thomsen HS, Lausten GS (2002) Bone bruise in the acutely injured knee. Knee Surg Sports Traumatol Arthrosc 10(2):96–101

    Article  PubMed  Google Scholar 

  10. Buyukgebiz O, Aktan AO, Yegen C, Yalcin AS, Haklar G, Yalin R, Ercan ZS (1994) Captopril increases endothelin serum concentrations and preserves intestinal mucosa after mesenteric ischemia-reperfusion injury. Res Exp Med 194(6):339–348

    Article  CAS  Google Scholar 

  11. Colon DA, Yoon BJ, Russell TA, Cammisa FP, Abjornson C (2015) Assessment of the injection behavior of commercially available bone BSMs for Subchondroplasty® procedures. Knee 22(6):597–603

    Article  PubMed  Google Scholar 

  12. Costa-Paz M, Muscolo DL, Ayerza M, Makino A, Aponte-Tinao L (2001) Magnetic resonance imaging follow-up study of bone bruises associated with anterior cruciate ligament ruptures. Arthroscopy 17(5):445–449

    Article  CAS  PubMed  Google Scholar 

  13. Crema MD, Roemer FW, Zhu Y, Marra MD, Niu J, Zhang Y, Lynch JA, Javaid MK, Lewis CE, El-Khoury GY, Felson DT, Guermazi A (2010) Subchondral cystlike lesions develop longitudinally in areas of bone marrow edema-like lesions in patients with or at risk for knee osteoarthritis: detection with MR imaging—the MOST study. Radiology 256(3):855–862

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dhollander AA, Huysse WC, Verdonk PC, Verstraete KL, Verdonk R, Verbruggen G, Almqvist KF (2010) MRI evaluation of a new scaffold-based allogenic chondrocyte implantation for cartilage repair. Eur J Radiol 75(1):72–81

    Article  CAS  PubMed  Google Scholar 

  15. Disler DG, McCauley TR, Ratner LM, Kesack CD, Cooper JA (1997) In-phase and out-of-phase MR imaging of bone marrow: prediction of neoplasia based on the detection of coexistent fat and water. Am J Roentgenol (AJR) 169(5):1439–1447

    Article  CAS  Google Scholar 

  16. Erlansson M, Bergqvist D, Persson NH, Svensjo E (1991) Modification of postischemic increase of leukocyte adhesion and vascular permeability in the hamster by iloprost. Prostaglandins 41(2):157–168

    Article  CAS  PubMed  Google Scholar 

  17. Erlansson M, Svensjo E, Bergqvist D (1989) Leukotriene B4-induced permeability increase in postcapillary venules and its inhibition by three different antiinflammatory drugs. Inflammation 13(6):693–705

    Article  CAS  PubMed  Google Scholar 

  18. Farr J (2013) Treatment of subchondral bone pathology. In: Paper presented at the ICRS World Congress, Izmir, Turkey

  19. Farr J, Cohen SB (2013) Expanding applications of the subchondroplasty procedure for the treatment of bone marrow lesions observed on magnetic resonance imaging. Oper Tech Sports Med 21(2):138–143

    Article  Google Scholar 

  20. Felson DT, Niu J, Guermazi A, Roemer F, Aliabadi P, Clancy M, Torner J, Lewis CE, Nevitt MC (2007) Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum 56(9):2986–2992

    Article  PubMed  Google Scholar 

  21. Filardo G, Kon E, Di Martino A, Perdisa F, Busacca M, Tentoni F, Balboni F, Marcacci M (2014) Is the clinical outcome after cartilage treatment affected by subchondral bone edema? Knee Surg Sports Traumatol Arthrosc 22(6):1337–1344

    Article  PubMed  Google Scholar 

  22. Filardo G, Kon E, Tentoni F, Andriolo L, Di Martino A, Busacca M, Di Matteo B, Marcacci M (2016) Anterior cruciate ligament injury: post-traumatic bone marrow oedema correlates with long-term prognosis. Int Orthop 40(1):183–190

    Article  PubMed  Google Scholar 

  23. Flemming DJ, Hash TW 2nd, Bernard SA, Brian PS (2014) MR imaging assessment of arthritis of the knee. Magn Reson Imaging Clin N Am 22(4):703–724

    Article  PubMed  Google Scholar 

  24. Forst J, Forst R, Heller KD, Adam G (1998) Spontaneous osteonecrosis of the femoral condyle: causal treatment by early core decompression. Arch Orthop Trauma Surg 117(1–2):18–22

    Article  CAS  PubMed  Google Scholar 

  25. Frobell RB (2011) Change in cartilage thickness, posttraumatic bone marrow lesions, and joint fluid volumes after acute ACL disruption: a two-year prospective MRI study of sixty-one subjects. J Bone Joint Surg Am 93(12):1096–1103

    Article  PubMed  Google Scholar 

  26. Grant SM, Goa KL (1992) Iloprost. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in peripheral vascular disease, myocardial ischaemia and extracorporeal circulation procedures. Drugs 43(6):889–924

    Article  CAS  PubMed  Google Scholar 

  27. Henderson I, Francisco R, Oakes B, Cameron J (2005) Autologous chondrocyte implantation for treatment of focal chondral defects of the knee—a clinical, arthroscopic, MRI and histologic evaluation at 2 years. Knee 12(3):209–216

    Article  PubMed  Google Scholar 

  28. Hernigou P, Poignard A, Zilber S, Rouard H (2009) Cell therapy of hip osteonecrosis with autologous bone marrow grafting. Indian J Orthop 43(1):40–45

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hunter DJ, Zhang Y, Niu J, Goggins J, Amin S, LaValley MP, Guermazi A, Genant H, Gale D, Felson DT (2006) Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum 54(5):1529–1535

    Article  PubMed  Google Scholar 

  30. Jager M, Tillmann FP, Thornhill TS, Mahmoudi M, Blondin D, Hetzel GR, Zilkens C, Krauspe R (2008) Rationale for prostaglandin I2 in bone marrow oedema—from theory to application. Arthritis Res Ther 10(5):R120

    Article  PubMed  PubMed Central  Google Scholar 

  31. Johnson DL, Bealle DP, Brand JC Jr, Nyland J, Caborn DN (2000) The effect of a geographic lateral bone bruise on knee inflammation after acute anterior cruciate ligament rupture. Am J Sports Med 28(2):152–155

    CAS  PubMed  Google Scholar 

  32. Karchevsky M, Schweitzer ME, Morrison WB, Parellada JA (2004) MRI findings of septic arthritis and associated osteomyelitis in adults. Am J Roentgenol (AJR) 182(1):119–122

    Article  Google Scholar 

  33. Karim AR, Cherian JJ, Jauregui JJ, Pierce T, Mont MA (2015) Osteonecrosis of the knee: review. Ann Transl Med 3(1):6

    PubMed  PubMed Central  Google Scholar 

  34. Klontzas ME, Vassalou EE, Zibis AH, Bintoudi AS, Karantanas AH (2015) MR imaging of transient osteoporosis of the hip: an update on 155 hip joints. Eur J Radiol 84(3):431–436

    Article  PubMed  Google Scholar 

  35. Kornaat PR, Kloppenburg M, Sharma R, Botha-Scheepers SA, Le Graverand MP, Coene LN, Bloem JL, Watt I (2007) Bone marrow edema-like lesions change in volume in the majority of patients with osteoarthritis; associations with clinical features. Eur Radiol 17(12):3073–3078

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kraenzlin ME, Graf C, Meier C, Kraenzlin C, Friedrich NF (2010) Possible beneficial effect of bisphosphonates in osteonecrosis of the knee. Knee Surg Sports Traumatol Arthrosc 18(12):1638–1644

    Article  PubMed  Google Scholar 

  37. Laslett LL, Dore DA, Quinn SJ, Boon P, Ryan E, Winzenberg TM, Jones G (2012) Zoledronic acid reduces knee pain and bone marrow lesions over 1 year: a randomised controlled trial. Ann Rheum Dis 71(8):1322–1328

    Article  CAS  PubMed  Google Scholar 

  38. Lecouvet FE, van de Berg BC, Maldague BE, Lebon CJ, Jamart J, Saleh M, Noel H, Malghem J (1998) Early irreversible osteonecrosis versus transient lesions of the femoral condyles: prognostic value of subchondral bone and marrow changes on MR imaging. Am J Roentgenol (AJR) 170(1):71–77

    Article  CAS  Google Scholar 

  39. Lotke PA, Abend JA, Ecker ML (1982) The treatment of osteonecrosis of the medial femoral condyle. Clin Orthop Relat Res 171:109–116

    PubMed  Google Scholar 

  40. Ma Y, Wang T, Liao J, Gu H, Lin X, Jiang Q, Bulsara MK, Zheng M, Zheng Q (2014) Efficacy of autologous bone marrow buffy coat grafting combined with core decompression in patients with avascular necrosis of femoral head: a prospective, double-blinded, randomized, controlled study. Stem Cell Res Ther 5(5):115

    Article  PubMed  PubMed Central  Google Scholar 

  41. Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18(4):419–433

    Article  PubMed  Google Scholar 

  42. Major NM, Helms CA (2002) MR imaging of the knee: findings in asymptomatic collegiate basketball players. Am J Roentgenol (AJR) 179(3):641–644

    Article  Google Scholar 

  43. Manara M, Varenna M (2014) A clinical overview of bone marrow edema. Reumatismo 66(2):184–196

    Article  CAS  PubMed  Google Scholar 

  44. Marcacci M, Andriolo L, Kon E, Filardo G (2015) Bone marrow edema and results after cartilage repair. Ann Transl Med 3(10):132

    PubMed  PubMed Central  Google Scholar 

  45. Marcacci M, Filardo G, Kon E (2013) Treatment of cartilage lesions: what works and why? Injury 44(Suppl. 1):S11–S15

    Article  PubMed  Google Scholar 

  46. Marcheggiani Muccioli GM, Grassi A, Setti S, Filardo G, Zambelli L, Bonanzinga T, Rimondi E, Busacca M, Zaffagnini S (2013) Conservative treatment of spontaneous osteonecrosis of the knee in the early stage: pulsed electromagnetic fields therapy. Eur J Radiol 82(3):530–537

    Article  CAS  PubMed  Google Scholar 

  47. Mayerhoefer ME, Kramer J, Breitenseher MJ, Norden C, Vakil-Adli A, Hofmann S, Meizer R, Siedentop H, Landsiedl F, Aigner N (2007) Short-term outcome of painful bone marrow oedema of the knee following oral treatment with iloprost or tramadol: results of an exploratory phase II study of 41 patients. Rheumatology 46(9):1460–1465

    Article  CAS  PubMed  Google Scholar 

  48. Mayerhoefer ME, Kramer J, Breitenseher MJ, Norden C, Vakil-Adli A, Hofmann S, Meizer R, Siedentop H, Landsiedl F, Aigner N (2008) MRI-demonstrated outcome of subchondral stress fractures of the knee after treatment with iloprost or tramadol: observations in 14 patients. Clin J Sport Med 18(4):358–362

    Article  PubMed  Google Scholar 

  49. McQueen FM (2012) Bone marrow edema and osteitis in rheumatoid arthritis: the imaging perspective. Arthritis Res Ther 14(5):224

    Article  PubMed  PubMed Central  Google Scholar 

  50. Meier C, Kraenzlin C, Friederich NF, Wischer T, Grize L, Meier CR, Kraenzlin ME (2014) Effect of ibandronate on spontaneous osteonecrosis of the knee: a randomized, double-blind, placebo-controlled trial. Osteoporos Int 25(1):359–366

    Article  CAS  PubMed  Google Scholar 

  51. Miller MD, Osborne JR, Gordon WT, Hinkin DT, Brinker MR (1998) The natural history of bone bruises. A prospective study of magnetic resonance imaging-detected trabecular microfractures in patients with isolated medial collateral ligament injuries. Am J Sports Med 26(1):15–19

    CAS  PubMed  Google Scholar 

  52. Mont MA, Baumgarten KM, Rifai A, Bluemke DA, Jones LC, Hungerford DS (2000) Atraumatic osteonecrosis of the knee. J Bone Joint Surg Am 82(9):1279–1290

    CAS  PubMed  Google Scholar 

  53. Mont MA, Marker DR, Zywiel MG, Carrino JA (2011) Osteonecrosis of the knee and related conditions. J Am Acad Orthop Surg 19(8):482–494

    Article  PubMed  Google Scholar 

  54. Murphy RT, Pennock AT, Bugbee WD (2014) Osteochondral allograft transplantation of the knee in the pediatric and adolescent population. Am J Sports Med 42(3):635–640

    Article  PubMed  Google Scholar 

  55. Nakamae A, Engebretsen L, Bahr R, Krosshaug T, Ochi M (2006) Natural history of bone bruises after acute knee injury: clinical outcome and histopathological findings. Knee Surg Sports Traumatol Arthrosc 14(12):1252–1258

    Article  PubMed  Google Scholar 

  56. Nardo L, Sandman DN, Virayavanich W, Zhang L, Souza RB, Steinbach L, Guindani M, Link TM (2013) Bone marrow changes related to disuse. Eur Radiol 23(12):3422–3431

    Article  PubMed  PubMed Central  Google Scholar 

  57. Narvaez JA, Narvaez J, Ortega R, De Lama E, Roca Y, Vidal N (2003) Hypointense synovial lesions on T2-weighted images: differential diagnosis with pathologic correlation. Am J Roentgenol (AJR) 181(3):761–769

    Article  Google Scholar 

  58. Niethammer TR, Valentin S, Gulecyuz MF, Rossbach BP, Ficklscherer A, Pietschmann MF, Muller PE (2015) Bone marrow edema in the knee and its influence on clinical outcome after matrix-based autologous chondrocyte implantation: results after 3-year follow-up. Am J Sports Med 43(5):1172–1179

    Article  PubMed  Google Scholar 

  59. Orth P, Cucchiarini M, Kohn D, Madry H (2013) Alterations of the subchondral bone in osteochondral repair—translational data and clinical evidence. Eur Cell Mater 25:299–316 (discussion 314–316)

    CAS  PubMed  Google Scholar 

  60. Orth P, Cucchiarini M, Wagenpfeil S, Menger MD, Madry H (2014) PTH [1–34]-induced alterations of the subchondral bone provoke early osteoarthritis. Osteoarthr Cartil 22(6):813–821

    Article  CAS  PubMed  Google Scholar 

  61. Orth P, Goebel L, Wolfram U, Ong MF, Graber S, Kohn D, Cucchiarini M, Ignatius A, Pape D, Madry H (2012) Effect of subchondral drilling on the microarchitecture of subchondral bone: analysis in a large animal model at 6 months. Am J Sports Med 40(4):828–836

    Article  PubMed  Google Scholar 

  62. Pape D, Seil R, Fritsch E, Rupp S, Kohn D (2002) Prevalence of spontaneous osteonecrosis of the medial femoral condyle in elderly patients. Knee Surg Sports Traumatol Arthrosc 10(4):233–240

    Article  PubMed  Google Scholar 

  63. Patel S (2014) Primary bone marrow oedema syndromes. Rheumatology 53(5):785–792

    Article  PubMed  Google Scholar 

  64. Prince JS, Laor T, Bean JA (2005) MRI of anterior cruciate ligament injuries and associated findings in the pediatric knee: changes with skeletal maturation. Am J Roentgenol (AJR) 185(3):756–762

    Article  Google Scholar 

  65. Ramnath RR, Kattapuram SV (2004) MR appearance of SONK-like subchondral abnormalities in the adult knee: SONK redefined. Skelet Radiol 33(10):575–581

    Article  Google Scholar 

  66. Rangger C, Kathrein A, Freund MC, Klestil T, Kreczy A (1998) Bone bruise of the knee: histology and cryosections in 5 cases. Acta Orthop Scand 69(3):291–294

    Article  CAS  PubMed  Google Scholar 

  67. Robertson DD, Armfield DR, Towers JD, Irrgang JJ, Maloney WJ, Harner CD (2009) Meniscal root injury and spontaneous osteonecrosis of the knee: an observation. J Bone Joint Surg Br 91(2):190–195

    Article  CAS  PubMed  Google Scholar 

  68. Roemer FW, Frobell R, Hunter DJ, Crema MD, Fischer W, Bohndorf K, Guermazi A (2009) MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthr Cartil 17(9):1115–1131

    Article  CAS  PubMed  Google Scholar 

  69. Sanders TG, Paruchuri NB, Zlatkin MB (2006) MRI of osteochondral defects of the lateral femoral condyle: incidence and pattern of injury after transient lateral dislocation of the patella. Am J Roentgenol (AJR) 187(5):1332–1337

    Article  Google Scholar 

  70. Scher C, Craig J, Nelson F (2008) Bone marrow edema in the knee in osteoarthrosis and association with total knee arthroplasty within a three-year follow-up. Skelet Radiol 37(7):609–617

    Article  Google Scholar 

  71. Schweitzer ME, White LM (1996) Does altered biomechanics cause marrow edema? Radiology 198(3):851–853

    Article  CAS  PubMed  Google Scholar 

  72. Sharkey PF, Cohen SB, Leinberry CF, Parvizi J (2012) Subchondral bone marrow lesions associated with knee osteoarthritis. Am J Orthop 41(9):413–417

    PubMed  Google Scholar 

  73. Sheah K, Png MA (2005) Meniscal cyst causing periarticular tibial erosion. Singap Med J 46(3):137–139

    CAS  Google Scholar 

  74. Sonin AH, Fitzgerald SW, Hoff FL, Friedman H, Bresler ME (1995) MR imaging of the posterior cruciate ligament: normal, abnormal, and associated injury patterns. Radiographics 15(3):551–561

    Article  CAS  PubMed  Google Scholar 

  75. Takahashi T, Tins B, McCall IW, Richardson JB, Takagi K, Ashton K (2006) MR appearance of autologous chondrocyte implantation in the knee: correlation with the knee features and clinical outcome. Skelet Radiol 35(1):16–26

    Article  CAS  Google Scholar 

  76. Takeda M, Higuchi H, Kimura M, Kobayashi Y, Terauchi M, Takagishi K (2008) Spontaneous osteonecrosis of the knee: histopathological differences between early and progressive cases. J Bone Joint Surg Br 90(3):324–329

    Article  CAS  PubMed  Google Scholar 

  77. Tanamas SK, Wluka AE, Pelletier JP, Pelletier JM, Abram F, Berry PA, Wang Y, Jones G, Cicuttini FM (2010) Bone marrow lesions in people with knee osteoarthritis predict progression of disease and joint replacement: a longitudinal study. Rheumatology 49(12):2413–2419

    Article  PubMed  Google Scholar 

  78. Tetta C, Busacca M, Moio A, Rinaldi R, Delcogliano M, Kon E, Filardo G, Marcacci M, Albisinni U (2010) Knee osteochondral autologous transplantation: long-term MR findings and clinical correlations. Eur J Radiol 76(1):117–123

    Article  PubMed  Google Scholar 

  79. Tins BJ, McCall IW, Takahashi T, Cassar-Pullicino V, Roberts S, Ashton B, Richardson J (2005) Autologous chondrocyte implantation in knee joint: MR imaging and histologic features at 1-year follow-up. Radiology 234(2):501–508

    Article  PubMed  Google Scholar 

  80. Trevisan C, Ortolani S, Monteleone M, Marinoni EC (2002) Regional migratory osteoporosis: a pathogenetic hypothesis based on three cases and a review of the literature. Clin Rheumatol 21(5):418–425

    Article  CAS  PubMed  Google Scholar 

  81. Vande Berg BC, Malghem J, Lecouvet FE, Maldague B (1998) Magnetic resonance imaging of the normal bone marrow. Skelet Radiol 27(9):471–483

    Article  CAS  Google Scholar 

  82. Varenna M, Adami S, Rossini M, Gatti D, Idolazzi L, Zucchi F, Malavolta N, Sinigaglia L (2013) Treatment of complex regional pain syndrome type I with neridronate: a randomized, double-blind, placebo-controlled study. Rheumatology 52(3):534–542

    Article  CAS  PubMed  Google Scholar 

  83. Varenna M, Zucchi F, Failoni S, Becciolini A, Berruto M (2015) Intravenous neridronate in the treatment of acute painful knee osteoarthritis: a randomized controlled study. Rheumatology 54(10):1826–1832

    Article  PubMed  Google Scholar 

  84. Vasiliadis HS, Danielson B, Ljungberg M, McKeon B, Lindahl A, Peterson L (2010) Autologous chondrocyte implantation in cartilage lesions of the knee: long-term evaluation with magnetic resonance imaging and delayed gadolinium-enhanced magnetic resonance imaging technique. Am J Sports Med 38(5):943–949

    Article  PubMed  Google Scholar 

  85. Vellet AD, Marks PH, Fowler PJ, Munro TG (1991) Occult posttraumatic osteochondral lesions of the knee: prevalence, classification, and short-term sequelae evaluated with MR imaging. Radiology 178(1):271–276

    Article  CAS  PubMed  Google Scholar 

  86. Yamamoto T, Bullough PG (2000) Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture. J Bone Joint Surg Am 82(6):858–866

    CAS  PubMed  Google Scholar 

  87. Yates PJ, Calder JD, Stranks GJ, Conn KS, Peppercorn D, Thomas NP (2007) Early MRI diagnosis and non-surgical management of spontaneous osteonecrosis of the knee. Knee 14(2):112–116

    Article  PubMed  Google Scholar 

  88. Yusuf E, Kortekaas MC, Watt I, Huizinga TW, Kloppenburg M (2011) Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. Ann Rheum Dis 70(1):60–67

    Article  PubMed  Google Scholar 

  89. Zanetti M, Bruder E, Romero J, Hodler J (2000) Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 215(3):835–840

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizaveta Kon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kon, E., Ronga, M., Filardo, G. et al. Bone marrow lesions and subchondral bone pathology of the knee. Knee Surg Sports Traumatol Arthrosc 24, 1797–1814 (2016). https://doi.org/10.1007/s00167-016-4113-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4113-2

Keywords

Navigation