Skip to main content
Log in

How to improve femoral component rotational alignment in computer-assisted TKA

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Although several anatomical landmarks have been proposed to obtain adequate femoral component alignment in total knee arthroplasty (TKA), there is still no consensus regarding the best way to correctly position the prosthetic component on the horizontal plane. A previous computed tomography (CT)-based study has demonstrated anatomical transepicondylar axis (aTEA) to be externally rotated relative to surgical transepicondylar axis (sTEA) of approximately 4.5°. In this study, it is described a new methodological approach to femoral component rotational positioning through the use of previously reported CT scan information and navigation.

Methods

Eight consecutive patients scheduled for navigated TKA were selected. Rotational placement of the femoral component was performed using navigation system. The femoral component was implanted setting 4.5° of internal rotation relative to the aTEA. Within 1 week from surgery, all patients underwent a CT scan, and the posterior condylar angle (PCA) was measured. A PCA of 0.0°, meaning component placement parallel to sTEA, was set as femoral rotational alignment target. Clinical evaluation was performed at a mean 14.3 months of follow-up with KOOS questionnaire.

Results

The mean PCA measured on post-operative CT images was 0.4° (SD 1.3°), meaning that the femoral component was averagely implanted with 0.4° of internal rotation relative to the sTEA. Seven out of eight cases (87.5 %) resulted to have within 1° deviation from the rotational alignment target. All patients but one reported good clinical results.

Conclusions

Relevant finding of the present study was that the use of navigation and aTEA as a reference demonstrated to be accurate to set up femoral component rotational positioning on the horizontal plane in TKA. Further study should be performed to confirm this conclusion.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aglietti P, Sensi L, Cuomo P, Ciardullo A (2008) Rotational position of femoral and tibial components in TKA using the femoral transepicondylar axis. Clin Orthop Relat Res 466(11):2751–2755

    Article  PubMed Central  PubMed  Google Scholar 

  2. Akagi M, Matsusue Y, Mata T, Asada Y, Horiguchi M, Iida H, Nakamura T (1999) Effect of rotational alignment on patellar tracking in total knee arthroplasty. Clin Orthop Relat Res 366:155–163

    Article  PubMed  Google Scholar 

  3. Akagi M, Yamashita E, Nakagawa T, Asano T, Nakamura T (2001) Relationship between frontal knee alignment and reference axes in the distal femur. Clin Orthop Relat Res 388:147–156

    Article  PubMed  Google Scholar 

  4. Asano T, Akagi M, Nakamura T (2005) The functional flexion-extension axis of the knee corresponds to the surgical epicondylar axis: in vivo analysis using a biplanar image-matching technique. J Arthroplasty 20(8):1060–1067

    Article  PubMed  Google Scholar 

  5. Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153

    Article  PubMed  Google Scholar 

  6. Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS (1993) Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res 286:40–47

    PubMed  Google Scholar 

  7. Chauhan SK, Scott RG, Breidahl W, Beaver RJ (2004) Computer-assisted knee arthroplasty versus a conventional jig-based technique. A randomised, prospective trial. J Bone Joint Surg Br 86(3):372–377

    Article  CAS  PubMed  Google Scholar 

  8. Cheng T, Zhang G, Zhang X (2011) Imageless navigation system does not improve component rotational alignment in total knee arthroplasty. J Surg Res 171(2):590–600

    Article  PubMed  Google Scholar 

  9. Cheng T, Zhao S, Peng X, Zhang X (2012) Does computer-assisted surgery improve postoperative leg alignment and implant positioning following total knee arthroplasty? A meta-analysis of randomized controlled trials? Knee Surg Sports Traumatol Arthrosc 20(7):1307–1322

    Article  PubMed  Google Scholar 

  10. Ensini A, Catani F, Leardini A, Romagnoli M, Giannini S (2007) Alignments and clinical results in conventional and navigated total knee arthroplasty. Clin Orthop Relat Res 457:156–162

    CAS  PubMed  Google Scholar 

  11. Fehring TK (2000) Rotational malalignment of the femoral component in total knee arthroplasty. Clin Orthop Relat Res 380:72–79

    Article  PubMed  Google Scholar 

  12. Fu Y, Wang M, Liu Y, Fu Q (2012) Alignment outcomes in navigated total knee arthroplasty: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 20(6):1075–1082

    Article  PubMed  Google Scholar 

  13. Griffin FM, Math K, Scuderi GR, Insall JN, Poilvache PL (2000) Anatomy of the epicondyles of the distal femur: MRI analysis of normal knees. J Arthroplasty 15(3):354–359

    Article  CAS  PubMed  Google Scholar 

  14. Jenny JY, Boeri C (2004) Low reproducibility of the intra-operative measurement of the transepicondylar axis during total knee replacement. Acta Orthop Scand 75(1):74–77

    Article  PubMed  Google Scholar 

  15. LaPrade RF, Engebretsen AH, Ly TV, Johansen S, Wentorf FA, Engebretsen L (2007) The anatomy of the medial part of the knee. J Bone Joint Surg Am 89(9):2000–2010

    Article  PubMed  Google Scholar 

  16. Laskin RS (1995) Flexion space configuration in total knee arthroplasty. J Arthroplasty 10(5):657–660

    Article  CAS  PubMed  Google Scholar 

  17. Luyckx T, Zambianchi F, Catani F, Bellemans J, Victor J (2013) Coronal alignment is a predictor of the rotational geometry of the distal femur in the osteo-arthritic knee. Knee Surg Sports Traumatol Arthrosc 21(10):2331–2337

    Article  CAS  PubMed  Google Scholar 

  18. Matsuda S, Miura H, Nagamine R, Urabe K, Hirata G, Iwamoto Y (2001) Effect of femoral and tibial component position on patellar tracking following total knee arthroplasty: 10-year follow-up of Miller-Galante I knees. Am J Knee Surg 14(3):152–156

    CAS  PubMed  Google Scholar 

  19. Matziolis G, Krocker D, Weiss U, Tohtz S, Perka C (2007) A prospective, randomized study of computer-assisted and conventional total knee arthroplasty. Three-dimensional evaluation of implant alignment and rotation. J Bone Joint Surg Am 89(2):236–243

    Article  PubMed  Google Scholar 

  20. Monticone M, Ferrante S, Salvaderi S, Rocca B, Totti V, Foti C, Roi GS (2012) Development of the Italian version of the knee injury and osteoarthritis outcome score for patients with knee injuries: cross-cultural adaptation, dimensionality, reliability, and validity. Osteoarthritis Cartilage 20(4):330–335

    Article  CAS  PubMed  Google Scholar 

  21. Nicoll D, Rowley DI (2010) Internal rotational error of the tibial component is a major cause of pain after total knee replacement. J Bone Joint Surg Br 92(9):1238–1244

    Article  CAS  PubMed  Google Scholar 

  22. Oberst M, Bertsch C, Würstlin S, Holz U (2003) CT analysis of leg alignment after conventional vs. navigated knee prosthesis implantation. Initial results of a controlled, prospective and randomized study. Unfallchirurg 106(11):941–948

    CAS  PubMed  Google Scholar 

  23. Olcott CW, Scott RD (1999) The Ranawat Award. Femoral component rotation during total knee arthroplasty. Clin Orthop Relat Res 367:39–42

    Article  PubMed  Google Scholar 

  24. Stöckl B, Nogler M, Rosiek R, Fischer M, Krismer M, Kessler O (2004) Navigation improves accuracy of rotational alignment in total knee arthroplasty. Clin Orthop Relat Res 426:180–186

    Article  PubMed  Google Scholar 

  25. Stoeckl B, Nogler M, Krismer M, Beimel C, de la Barrera JL, Kessler O (2006) Reliability of the transepicondylar axis as an anatomical landmark in total knee arthroplasty. J Arthroplasty 21(6):878–882

    Article  PubMed  Google Scholar 

  26. Whiteside LA, Arima J (1995) The anteroposterior axis for femoral rotational alignment in valgus total knee arthroplasty. Clin Orthop Relat Res 321:168–172

    PubMed  Google Scholar 

  27. Yoshino N, Takai S, Ohtsuki Y, Hirasawa Y (2001) Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplasty 16(4):493–497

    Article  CAS  PubMed  Google Scholar 

  28. Zimmermann F, Schwenninger C, Nolten U, Firmbach FP, Elfring R, Radermacher K (2012) A new approach to implant alignment and ligament balancing in total knee arthroplasty focussing on joint loads. Biomed Tech (Berl) 57(4):283–291

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Zambianchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zambianchi, F., Luyckx, T., Victor, J. et al. How to improve femoral component rotational alignment in computer-assisted TKA. Knee Surg Sports Traumatol Arthrosc 22, 1805–1811 (2014). https://doi.org/10.1007/s00167-014-3045-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3045-y

Keywords

Navigation