Skip to main content
Log in

Crossflow effects on shock wave/turbulent boundary layer interactions

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The effects of crossflow on the interaction between an impinging shock wave and a high-speed turbulent boundary layer are investigated using direct numerical simulations of statistically two-dimensional, three-component flow. The leading-order effect of crossflow is increased size and strength of the separation bubble, with upstream and downstream displacement of the separation and reattachment points, respectively. This effect is traced to retarded growth of the shear layer surrounding the separation bubble, with associated reduction of the turbulent shear stress. Genuinely, three-dimensional effects are observed in the interaction and in the downstream recovery zone, with mean flow direction changing both in the longitudinal and wall-normal directions. Three-dimensional, non-equilibrium effects yield substantial misalignment between turbulent stresses and mean strain rate, thus providing a challenging benchmark for the development and validation of turbulence models for compressible flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Adler, M.C., Gaitonde, D.V.: Dynamic linear response of a shock/turbulent-boundary-layer interaction using constrained perturbations. J. Fluid Mech. 840, 291–341 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adler, M.C., Gaitonde, D.V.: Flow similarity in strong swept-shock/ turbulent-boundary-layer interactions. AIAA J. 57, 1579–1593 (2019)

    Article  Google Scholar 

  3. Adler, M.C., Gaitonde, D.V.: Dynamics of strong swept-shock/turbulent-boundary-layer interactions. J. Fluid Mech. 896, A29 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babinsky, H., Harvey, J.K.: Shock Wave-Boundary-Layer Interactions. Cambridge University Press (2011)

  5. Clemens, N.T., Narayanaswamy, V.: Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu. Rev. Fluid Mech. 46, 469–492 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coleman, G.N., Rumsey, C.L., Spalart, P.R.: Numerical study of a turbulent separation bubble with sweep. J. Fluid Mech. 880, 684–706 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dolling, D.S.: Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39, 1517–1531 (2001)

    Article  Google Scholar 

  8. Eaton, J.: Effects of mean flow three dimensionality on turbulent boundary-layer structure. AIAA J. 33, 2020–2025 (1995)

    Article  Google Scholar 

  9. Erengil, M.E., Dolling, D.S.: Effects of sweepback on unsteady separation in Mach 5 compression ramp interactions. AIAA J. 31, 302–311 (1993)

    Article  Google Scholar 

  10. Fang, J., Yao, Y., Zheltovodov, A.A., Lu, L.: Investigation of three-dimensional shock wave/turbulent-boundary-layer interaction initiated by a single fin. AIAA J. 55, 509–523 (2017). https://doi.org/10.2514/1.j055283

    Article  Google Scholar 

  11. Flack, K.: Near-wall structure of three-dimensional turbulent boundary layers. Exp. Fluids 23, 335–340 (1997)

    Article  Google Scholar 

  12. Gaitonde, D.V.: Progress in shock wave/boundary layer interactions. Prog. Aerosp. Sci. 72, 80–99 (2015)

    Article  Google Scholar 

  13. Gaitonde, D.V., Shang, J.S., Garrison, T.J., Zheltovodov, A.A., Maksimov, A.I.: Three-dimensional turbulent interactions caused by asymmetric crossing-shock configurations. AIAA J. 37, 1602–1608 (1999)

    Article  Google Scholar 

  14. Gross, A., Little, J.C., Fasel, H.F.: Numerical investigation of shock wave turbulent boundary layer interactions. AIAA Aerosp. Sci. Meeting 2018, 1–27 (2018)

    Google Scholar 

  15. Lozano-Durán, A., Giometto, M.G., Park, G.I., Moin, P.: Non-equilibrium three-dimensional boundary layers at moderate Reynolds numbers. J. Fluid Mech. (2020). https://doi.org/10.1017/jfm.2019.869

    Article  MathSciNet  MATH  Google Scholar 

  16. Lund, T.S., Wu, X., Squires, K.D.: On the generation of turbulent inflow conditions for boundary layer simulations. J. Comput. Phys. 140, 233–258 (1996)

    Article  MATH  Google Scholar 

  17. Morgan, B., Larsson, J., Kawai, S., Lele, S.: Improving low-frequency characteristics of recycling/rescaling inflow turbulence generation. AIAA J. 49, 582–597 (2011)

    Article  Google Scholar 

  18. Padmanabhan, S., Maldonado, J.C., Threadgill, J.A., Little, J.C.: Experimental study of swept impinging oblique shock/boundary-layer interactions. AIAA J. 59, 140–149 (2021). https://doi.org/10.2514/1.J058910

    Article  Google Scholar 

  19. Piponniau, S., Dussauge, J.P., Debiève, J.F., Dupont, P.: A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629, 87–108 (2009)

    Article  MATH  Google Scholar 

  20. Pirozzoli, S.: Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229, 7180–7190 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pirozzoli, S., Bernardini, M.: Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction. AIAA J. 49, 1307–1312 (2011)

    Article  Google Scholar 

  22. Pirozzoli, S., Bernardini, M., Grasso, F.: Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. J. Fluid Mech. 657, 361–393 (2010)

    Article  MATH  Google Scholar 

  23. Pirozzoli, S., Grasso, F.: Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25. Physics of Fluids 18 (2006)

  24. Pope, S.B.: Turbulent Flows. Cambridge University Press (2000)

  25. Priebe, S., Pino Martín, M.: Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction. J. Fluid Mech. 699, 1–49 (2012)

    Article  MATH  Google Scholar 

  26. Schmisseur, J.D., Dolling, D.S.: Fluctuating wall pressures near separation in highly swept turbulent interactions. AIAA J. 32, 1151–1157 (1994)

    Article  Google Scholar 

  27. Settles, G.S., Perkins, J.J., Bogdonoff, S.M.: Investigation of three-dimensional shock/boundary-layer interactions at swept compression corners. AIAA J. 18, 779–785 (1980)

    Article  Google Scholar 

  28. Settles, G.S., Teng, H.Y.: Cylindrical and conical flow regimes of three-dimensional shock/boundary-layer interactions. AIAA J. 22, 194–200 (1984). https://doi.org/10.2514/3.8367

    Article  Google Scholar 

  29. Smits, A.J., Dussauge, J.P.: Turbulent Shear Layers in Supersonic Flow, 2nd edn. Springer, New York (2006)

    Google Scholar 

  30. Souverein, L.J., Dupont, P., Debiève, J.F., Dussauge, J.P., Van Oudheusden, B.W., Scarano, F.: Effect of interaction strength on unsteadiness in turbulent shock-wave-induced separations. AIAA J. 48, 1480–1493 (2010)

    Article  Google Scholar 

  31. Threadgill, J.A., Little, J.C.: An inviscid analysis of swept oblique shock reflections. J. Fluid Mech. 890, A22 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vanstone, L., Clemens, N.T.: POD analysis of unsteadiness mechanisms within a swept compression-ramp shock-wave boundary-layer interaction at Mach 2. In: AIAA Aerospace Sciences Meeting, 2018 (2018)

  33. Vanstone, L., Musta, M.N., Seckin, S., Clemens, N.T.: Experimental study of the mean structure and quasi-conical scaling of a swept-compression-ramp interaction at Mach 2. J. Fluid Mech. 841, 1–27 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wray, A.A.: Minimal storage time advancement schemes for spectral methods. Technical Report. NASA Ames Research Center, Moffett Field, CA (1990)

    Google Scholar 

  35. Wygnanski, I., Tewes, P., Taubert, L.: Applying the boundary-layer independence principle to turbulent flows. J. Aircr. 51, 175–182 (2014). https://doi.org/10.2514/1.C032206

    Article  Google Scholar 

  36. Zuo, F.Y., Memmolo, A., Huang, G.P., Pirozzoli, S.: Direct numerical simulation of conical shock wave-turbulent boundary layer interaction. J. Fluid Mech. 877, 167–195 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The results reported in this paper have been produced using the PRACE Research Infrastructure resource MARCONI and the ISCRA resource Marconi100 based at CINECA, Casalecchio di Reno, Italy, as well as the resources of the Argonne Leadership Computing Facility (a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357) as part of support from the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

Funding

This study has been funded by the US Air Force Office of Scientific Research under Grants FA9550-19-1-7029 and FA9550-19-1-0210, with additional support from the AFOSR International Student Exchange Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Di Renzo.

Additional information

Communicated by Vassilios Theofilis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Renzo, M., Oberoi, N., Larsson, J. et al. Crossflow effects on shock wave/turbulent boundary layer interactions. Theor. Comput. Fluid Dyn. 36, 327–344 (2022). https://doi.org/10.1007/s00162-021-00574-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-021-00574-y

Keywords

Navigation