Skip to main content
Log in

An advanced switching parameter for a hybrid LES/RANS model considering the characteristics of near-wall turbulent length scales

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

In this study, we proposed an idea for an advanced switching parameter used in a hybrid approach connecting large eddy simulation (LES) with Reynolds-averaged Navier–Stokes modeling [the hybrid LES/RANS (HLR) model]. Although the HLR model is promising way to predict engineering turbulent flows, an important problem is that RANS is always adopted in the near-wall region, even if the grid resolution is fine enough for LES. To overcome this difficulty, the switching parameter proposed here introduced knowledge of the Kolmogorov microscale that is thought to be reasonable for representing the near-wall turbulence. This parameter enabled the present HLR model to be smoothly replaced by a full LES if a grid resolution was fine enough in the near-wall region. To confirm model performance, the present HLR model was applied to numerical simulations of a periodic hill flow as well as fundamental plane channel flows. The model generally provided reasonable predictions for these test cases that include complex turbulence with massive flow separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smagorinsky J.: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  2. Bardina, J., Ferziger, J.H., Reynolds, W.C.: Improved Subgrid Scale Models for Large Eddy Simulation, AIAA Paper, No. 80-1357 (1980)

  3. Germano M., Piomelli U., Moin P., Cabot W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  4. Lilly D.K.: A proposed modification of the Germano subgridscale closure method. Phys. Fluids A 4, 633–635 (1992)

    Article  Google Scholar 

  5. Zang Y., Street R.L., Koseff J.R.: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A 5, 3186–3196 (1993)

    Article  Google Scholar 

  6. Horiuti K.: A new dynamic two-parameter mixed model for large-eddy simulation. Phys. Fluids 9, 3443–3464 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Morinishi Y., Vasilyev O.V.: A recommended modification to the dynamic two-parameter mixed subgrid scale model for large eddy simulation of wall bounded turbulent flow. Phys. Fluids 13, 3400–3410 (2001)

    Article  Google Scholar 

  8. Balaras E., Benocci C., Piomelli U.: Two-layer approximate boundary conditions for large-eddy simulations. AIAA J. 34, 1111–1119 (1996)

    Article  MATH  Google Scholar 

  9. Nikitin N.V., Nicoud F., Wasistho B., Squires K.D., Spalart P.R.: An approach to wall modeling in large-eddy simulations. Phys. Fluids 12, 1629–1632 (2000)

    Article  Google Scholar 

  10. Hamba F.: An attempt to combine large eddy simulation with the k − ɛ model in a channel-flow calculation. Theor. Comput. Fluid Dyn. 14, 323–336 (2001)

    Article  MATH  Google Scholar 

  11. Piomelli U., Balaras E., Pasinato H., Squaires K.D., Spalart P.R.: The inner-outer layer interface in large-eddy simulations with wall-layer models. Int. J. Heat Fluid Flow 24, 538–550 (2003)

    Article  Google Scholar 

  12. Davidson L., Peng S.H.: Hybrid LES-RANS modelling: a one-equation SGS model combined with a k−ω model for predicting recirculating flows. Int. J. Numer. Meth. Fluids 43, 1003–1018 (2003)

    Article  MATH  Google Scholar 

  13. Batten P., Goldberg U., Chakravarthy S.: Interfacing statistical turbulence closures with large-eddy simulation. AIAA J. 42, 485–492 (2004)

    Article  Google Scholar 

  14. Hanjalic, K., Hadziabdic, M., Temmerman, L. Leschziner, M.A.: Merging LES and RANS strategies: zonal or seamless coupling? In: Friedrich, R., et al. (eds.) Direct and Large Eddy Simulation V, pp. 451–464. Kluwer, Dordrecht (2004)

  15. Temmerman L., Hadziabdic M., Leschziner M.A., Hanjalic K.: . Int. J. Heat Fluid Flow 26, 173–190 (2005)

    Article  Google Scholar 

  16. Abe K.: A hybrid LES/RANS approach using an anisotropy-resolving algebraic turbulence model. Int. J. Heat Fluid Flow 26, 204–222 (2005)

    Article  Google Scholar 

  17. Spalart P.R., Deck S., Shur M.L., Squires K.D., Strelets M.Kh., Travin A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theore. Comput. Fluid Dyn. 20, 181–195 (2006)

    Article  MATH  Google Scholar 

  18. Breuer M., Jaffrezic B., Arora K.: Hybrid LES/RANS technique based on a one-equation near-wall model. Theore. Comput. Fluid Dyn. 22, 157–187 (2008)

    Article  MATH  Google Scholar 

  19. Deck S.: Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation. Theor. Comput. Fluid Dyn. 26, 523–550 (2012)

    Article  Google Scholar 

  20. Abe K.: An improved anisotropy-resolving subgrid-scale model with the aid of a scale-similarity modeling concept. Int. J. Heat Fluid Flow 39, 42–52 (2013)

    Article  Google Scholar 

  21. Abe K.: An investigation of SGS-stress anisotropy modeling in complex turbulent flow fields. Flow Turbul. Combust. 92, 503–525 (2014)

    Article  Google Scholar 

  22. Inagaki M.: A new wall-damping function for large eddy simulation employing Kolmogorov velocity scale. Int. J. Heat Fluid Flow 32, 26–40 (2011)

    Article  Google Scholar 

  23. Abe K., Jang Y.J., Leschziner M.A.: An investigation of wall-anisotropy expressions and length-scale equations for noninear eddy-viscosity models. Int. J. Heat Fluid Flow 24, 181–198 (2003)

    Article  Google Scholar 

  24. Moser R.D., Kim J., Mansour N.N.: Direct numerical simulation of turbulent channel flow up to Re τ = 590. Phys. Fluids 11, 943–945 (1999)

    Article  MATH  Google Scholar 

  25. Abe H., Kawamura H., Matsuo Y.: Surface heat-flux fluctuations in a turbulent channel flow up to Re τ = 1020 with Pr  =  0.025 and 0.71. Int. J. Heat Fluid Flow 25, 404–419 (2004)

    Article  Google Scholar 

  26. Nagano Y., Tagawa M.: An improved k−ɛ model for boundary layer flows. J. Fluids Eng. 112, 33–39 (1990)

    Article  Google Scholar 

  27. Abe K., Kondoh T., Nagano Y.: A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows—I. Flow field calculations. Int. J. Heat Mass Transf. 37, 139–151 (1994)

    Article  MATH  Google Scholar 

  28. Temmerman L., Leschziner M.A., Mellen C.P., Froehlich J.: Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions. Int. J. Heat Fluid Flow 24, 157–180 (2003)

    Article  Google Scholar 

  29. Muto, M., Tsubokura, M., Oshima, N.: Negative Magnus lift on a rotating sphere at around the critical Reynolds number. Phys. Fluids 24, 014102 (2012)

  30. Kim J., Moin P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308–323 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Amsden A.A., Harlow F.H.: A simplified MAC technique for incompressible fluid flow calculations. J. Comput. Phys. 6, 322–325 (1970)

    Article  MATH  Google Scholar 

  32. Rhie C.M., Chow W.L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983)

    Article  MATH  Google Scholar 

  33. Abe K., Kondoh T., Nagano Y.: On Reynolds stress expressions and near-wall scaling parameters for predicting wall and homogeneous turbulent shear flows. Int. J. Heat Fluid Flow 18, 266–282 (1997)

    Article  Google Scholar 

  34. Froehlich J., Mellen C.P., Rodi W., Temmerman L., Leschziner M.A.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 19–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Abe.

Additional information

Communicated by Tim Colonius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, Ki. An advanced switching parameter for a hybrid LES/RANS model considering the characteristics of near-wall turbulent length scales. Theor. Comput. Fluid Dyn. 28, 499–519 (2014). https://doi.org/10.1007/s00162-014-0328-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-014-0328-3

Keywords

Navigation