Skip to main content
Log in

An internal variable treatment of evolutive problems in hardening plasticity and viscoplasticity with singularities

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In the present paper, evolutive problems in hardening plasticity and viscoplasticity are analyzed by means of an internal variable formulation. The treatment is developed by taking advantage of the proper tools to deal with singularities and non-smooth functions and within the framework of the generalized standard material model. In fact, many physical phenomena pertinent to plasticity and viscoplasticity problems are represented by functions characterized by singularities such as for instance non-smooth yield criteria or non-smooth phase-transformation functions. A complete formulation of subdifferential evolutive laws and constitutive relations is presented herein for hardening plasticity and viscoplasticity by considering a framework which is adequate to deal with singularities of functions and non-smooth yield criteria. The Lagrangian of the plastic and viscoplastic constitutive problem with hardening is adopted herein in a form usually not considered. Accordingly, by enforcing the optimality conditions of the Lagrangian different equivalent expressions are illustrated for the flow laws, the evolutive laws of the internal variables and the complementarity conditions. Equivalent formulations of the evolutive laws and of the complementarity conditions are suitably derived and discussed. The proposed approach shows to be advantageous since it gives a proper geometrical framework to the maximum dissipation principle in non-smooth plasticity and viscoplasticity problems with hardening. In addition, the proposed formulation results to be useful for broadening the adopted geometrical framework to different types of flow laws and evolutive laws for new and innovative solid materials with plastic and viscoplastic constitutive behavior with hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moreau, J.J.: Application of convex analysis to the treatment of elastoplastic systems. In: Germain, P., Nayroles, B. (eds.) Applications of Methods of Functional Analysis to Problems in Mechanics. Springer-Verlog, Berlin (1976)

    Google Scholar 

  2. Moreau, J.J.: On Unilateral Constraints, Friction and Plasticity. CIME (Bressanone), Cremonese, Roma (1973)

    Google Scholar 

  3. Eve, R.A., Reddy, B.D., Rockafellar, R.T.: An internal variable theory of elastoplasticity based on the maximum plastic work inequality. Quart. Appl. Math. 48, 59–83 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Eve, R.A., Gultop, T., Reddy, B.D.: An internal variable finite-strain theory of plasticity within the framework of convex analysis. Quart. Appl. Math. 48, 625–643 (1990)

    MathSciNet  MATH  Google Scholar 

  5. Rajagopal, K.R., Srinivasa, A.R.: Mechanics of the inelastic behavior of materials. Part II: inelastic response. Int. J. Plasticity 14(10–11), 969–995 (1998)

    MATH  Google Scholar 

  6. Srinivasa, A.R.: On the nature of the response functions in rate-independent plasticity. Int. J. Non-Linear Mech. 32(1), 103–119 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Piccolroaz, A., Bigoni, D.: Yield criteria for quasibrittle and frictional materials: A generalization to surfaces with corners. Int. J. Solids Struct. 46, 3587–3596 (2009)

    MATH  Google Scholar 

  8. Peric, D.: On a class of constitutive equations in viscoplasticity: formulation and computational issues. Int. J. Numer. Meth. Engrg. 36, 1365–1393 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Bigoni, D., Piccolroaz, A.: Yield criteria for quasibrittle and frictional materials. Int. J. Solids Struct. 41, 2855–2878 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Collins, I.F., Kelly, P.A.: A thermomechanical analysis of a family of soil models. Géotechnique 52(7), 507–518 (2002)

    Google Scholar 

  11. Collins, I.F.: Elastic/plastic models for soils and sands. Int. J. Mech. Sci. 47, 493–508 (2005)

    MATH  Google Scholar 

  12. Stupkiewicz, S., Denzer, R., Piccolroaz, A., Bigoni, D.: Implicit yield function formulation for granular and rock-like materials. Comput. Mech. 54(5), 1163–1173 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Poltronieri, F., Piccolroaz, A., Bigoni, D., Romero, Baivier S.: A simple and robust elastoplastic constitutive model for concrete. Eng. Struct. 60, 81–84 (2014)

    Google Scholar 

  14. Sysala, S., Cermak, M., Koudelka, T., Kruis, J., Zeman, J., Blaheta, R.: Subdifferential-based implicit return-mapping operators in computational plasticity. Z. Angew. Math. Mech. 96(11), 1318–1338 (2016)

    MathSciNet  Google Scholar 

  15. Sysala, S., Cermak, M., Ligursky, T.: Subdifferential-based implicit return-mapping operators in Mohr-Coulomb plasticity. Z. Angew. Math. Mech. 97(12), 1502–1523 (2017)

    MathSciNet  Google Scholar 

  16. Perzyna, P.: The constitutive equations for rate sensitive materials. Quart. Appl. Math. 20, 321–332 (1963)

    MathSciNet  MATH  Google Scholar 

  17. Perzyna, P.: Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243–377 (1966)

    Google Scholar 

  18. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer-Verlag, Berlin (1976)

    MATH  Google Scholar 

  19. Simo, J.C., Kennedy, J.J., Govindjee, S.: Non-smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms. Int. J. Numer. Meth. Eng. 26, 2161–2185 (1988)

    MATH  Google Scholar 

  20. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer-Verlag, New York (1998)

    MATH  Google Scholar 

  21. Ortiz, M., Pinsky, P.M., Taylor, R.L.: Operator split methods for the numerical solution of the elastoplastic dynamic problem. Comput. Methods Appl. Mech. Eng. 37, 137–157 (1983)

    MATH  Google Scholar 

  22. Ju, J.W.: Consistent tangent moduli for a class of viscoplasticity. J. Engrg. Mech. 116(8), 1764–1779 (1990)

    Google Scholar 

  23. Naghdi, P.M., Murch, S.A.: On the mechanical behaviour of viscoelastic/plastic solids. J. Appl. Mech. 30, 321–328 (1963)

    ADS  MATH  Google Scholar 

  24. Mandel, J.: Plasticité Classique et Viscoplasticité. Cours C.I.S.M, Udine, Italy (1971)

    MATH  Google Scholar 

  25. Germain, P., Nguyen, Q.S., Suquet, P.: Continuum thermodynamics. ASME J. Appl. Mech. 50, 1010–1020 (1983)

    ADS  MATH  Google Scholar 

  26. Lemaitre, J., Chaboche, J.L.: Mechanics of Solids Materials. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  27. Skrzypek, J.J., Hetnarski, R.B.: Plasticity and Creep. CRC Press, Boca Raton (1993)

    Google Scholar 

  28. Halphen, B., Nguyen, Q.S.: Sur les matériaux standards généralisés. Jour. Mech. 14, 39–63 (1975)

    MATH  Google Scholar 

  29. De Angelis, F.: Extended formulations of evolutive laws and constitutive relations in non-smooth plasticity and viscoplasticity. Compos. Struct. 193, 35–41 (2018)

    Google Scholar 

  30. De Angelis, F.: An internal variable variational formulation of viscoplasticity. Comput. Methods Appl. Mech. Engrg. 190, 35–54 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  31. DeAngelis, F., Cancellara, D.: Multifield variational principles and computational aspects in rate plasticity. Comput. Struct. 180, 27–39 (2017)

    Google Scholar 

  32. Alfano, G., De Angelis, F., Rosati, L.: General solution procedures in elasto/viscoplasticity. Comput. Methods Appl. Mech. Eng. 190, 5123–5147 (2001)

    ADS  MATH  Google Scholar 

  33. DeAngelis, F., Taylor, R.L.: An efficient return mapping algorithm for elastoplasticity with exact closed form solution of the local constitutive model. Eng. Comput. 32(8), 2259–2291 (2015)

    Google Scholar 

  34. DeAngelis, F., Taylor, R.L.: A nonlinear finite element plasticity formulation without matrix inversions. Finite Elem. Anal. Des. 112, 11–25 (2016)

    MathSciNet  Google Scholar 

  35. DeAngelis, F.: A comparative analysis of linear and nonlinear kinematic hardening rules in computational elastoplasticity. Tech. Mech. 32(2–5), 164–173 (2012)

    Google Scholar 

  36. DeAngelis, F.: An effective computational approach for the numerical simulation of elasto-/viscoplastic solid materials,. Adv. Mech. Eng. 7(2), 340726 (2015)

    Google Scholar 

  37. DeAngelis, F., Cancellara, D., Grassia, L., D’Amore, A.: The influence of loading rates on hardening effects in elastoplastic strain-hardening materials. Mech. Time-Depend. Mater. 22(4), 533–551 (2018)

    ADS  Google Scholar 

  38. De Angelis, F.: A multifield variational formulation of viscoplasticity suitable to deal with singularities and non-smooth functions. Int. J. Eng. Sci. 172, 103616 (2022)

    MathSciNet  MATH  Google Scholar 

  39. Placidi, L.: A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Continuum Mech. Thermodyn. 28(1–2), 119–137 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Placidi, L., Barchiesi, E., Misra, A., Timofeev, D.: Micromechanics-based elasto-plastic-damage energy formulation for strain gradient solids with granular microstructure. Continuum Mech. Thermodyn. 33(5), 2213–2241 (2021)

    ADS  MathSciNet  Google Scholar 

  41. Placidi, L., Timofeev, D., Maksimov, V., Barchiesi, E., Ciallella, A., Misra, A., dell’Isola, F.: Micro-mechano-morphology-informed continuum damage modeling with intrinsic 2nd gradient (pantographic) grain-grain interactions. Int. J. Solids Struct. 254–255, 111880 (2022)

    Google Scholar 

  42. Placidi, L., Barchiesi, E., dell’Isola, F., Maksimov, V., Misra, A., Rezaei, E., Scrofani, A., Timofeev, D.: On a hemi-variational formulation for a 2D elasto-plastic-damage strain gradient solid with granular microstructure. Math. Eng. 5(1), 1–24 (2023)

    MathSciNet  Google Scholar 

  43. Placidi, L., Misra, A., Barchiesi, E.: Simulation results for damage with evolving microstructure and growing strain gradient moduli. Continuum Mech. Thermodyn. 31(4), 1143–1163 (2019)

    ADS  MathSciNet  Google Scholar 

  44. Giorgio, I.: A variational formulation for one dimensional linear thermoviscoelasticity. Math. Mech. Complex Syst. 9(4), 397–412 (2021)

    MathSciNet  MATH  Google Scholar 

  45. Giorgio, I., Scerrato, D.: Multi-scale concrete model with rate-dependent internal friction. Eur. J. Environ. Civ. Eng. 21(7–8), 821–839 (2017)

    Google Scholar 

  46. Ciallella, A., Scerrato, D., Spagnuolo, M., Giorgio, I.: A continuum model based on Rayleigh dissipation functions to describe a Coulomb-type constitutive law for internal friction in woven fabrics. Zeitschrift fur Angewandte Mathematik und Physik 73(5), 209 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  47. von Mises, R.: Mechanik der plastischen Formänderung von Kristallen. Z. Angew. Math. Mech. 8, 161–185 (1928)

    MATH  Google Scholar 

  48. Hill, R.: A variational principle of maximum plastic work in classical plasticity. Quart. J. Mech. Appl. Math. 1, 18–28 (1948)

    MathSciNet  MATH  Google Scholar 

  49. Hill, R.: The Mathematical Theory of Plasticity. Oxford University Press, Oxford (1950)

    MATH  Google Scholar 

  50. Mandel, J.: Contribution théorique à l’étude de l’écrouissage et des lois de l’écoulement plastique, Proceedings of the Eleventh International Congress of Applied Mechanics Munich (Germany) (Munich 1964), Springer-Verlag, pp. 502-509, (1966)

  51. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  52. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer-Verlag, Berlin (1993)

    MATH  Google Scholar 

  53. Luenberger, D.G.: Introduction to Linear and Non-Linear Programming. Addison-Wesley, Boston (1973)

    MATH  Google Scholar 

  54. Koiter, W.T.: Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with singular yield surface. Quart. Appl. Math. 11, 350–354 (1953)

    MathSciNet  MATH  Google Scholar 

  55. Koiter, W.T.: General theorems for elastic-plastic solids. In: Progress in Solid Mechanics, 1, Chapter IV; I.N. Sneddon and R. Hill (Eds.); North Holland Publishing Co., Amsterdam, pp. 165-220, (1960)

  56. De Angelis F.: Constitutive Models and Computational Algorithms in Elasto-Viscoplasticity. Ph. D. Thesis (in Italian) submitted at the end of academic year 1996-1997 (31 October 1997) for the 10th cycle PhD program, University of Naples Federico II, Naples, Italy, February (1998)

  57. Hohenemser, K., Prager, W.: Über die Ansätze der Mechanik isotroper Kontinua. Zeitschrift f. angew. Math. u. Mech. 12, 216–226 (1932)

    ADS  MATH  Google Scholar 

  58. Prager, W.: Mécanique des solides isotropes au delà du domaine élastique. Mémorial Sci. Math. 87, 1–64 (1937)

    MATH  Google Scholar 

  59. Prager, W.: Linearization in viscoplasticity. Oesterreichisches Ing. Arch. 15, 152–157 (1961)

    MATH  Google Scholar 

  60. Prager, W.: Introduction to Mechanics of Continua. Ginn and Company, Boston (1961)

    MATH  Google Scholar 

  61. Mandel, J.: Generalisation de la theorie de plasticite de W.T. Koiter. Int. J. Solids Struct. 1, 273–295 (1965)

    Google Scholar 

  62. Ottosen, N.S., Ristinmaa, M.: Corners in plasticity - Koiter’s theory revisited. Int. J. Solids Struct. 33, 3697–3721 (1996)

    MATH  Google Scholar 

  63. Ristinmaa, M., Ottosen, N.S.: Viscoplasticity based on an additive split of the conjugated forces. Eur. J. Mech. A Solids 17, 207–235 (1998)

    MathSciNet  MATH  Google Scholar 

  64. De Angelis, F.: Reflections on frequently used viscoplastic constitutive models, Proceedings of the Symposium on Trends and Applications of Mathematics to Mechanics (STAMM 2002), Maiori, Italy, 29 September-04 October, 2002. In: Trends and Applications of Mathematics to Mechanics; S. Rionero and G. Romano (Eds.); Springer-Verlag, Milano, pp. 19-31, (2005)

Download references

Acknowledgements

This research is supported by the Italian Ministry of University and Research (MUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio De Angelis.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Angelis, F. An internal variable treatment of evolutive problems in hardening plasticity and viscoplasticity with singularities. Continuum Mech. Thermodyn. 35, 1807–1819 (2023). https://doi.org/10.1007/s00161-023-01227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-023-01227-7

Keywords

Navigation