Skip to main content
Log in

Thermodynamic consistency of nonclassical continuum theories for solid continua incorporating rotations

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this paper, we present derivations of three micropolar nonclassical continuum theories in which a material point always has displacements \( \pmb {\varvec{u }} \) as degrees of freedom. Additionally, (i) in the first nonclassical continuum theory (NCCT) we consider internal or classical rotations \({}_i \pmb {\varvec{\varTheta }}\) (known) due to skew symmetric part of the deformation gradient tensor; (ii) in the second NCCT, we consider both internal rotations \({}_i \pmb {\varvec{\varTheta }}\) and external or Cosserat or microrotations \({}_e \pmb {\varvec{\varTheta }}\) (unknown degrees of freedom); (iii) in the third NCCT, we consider Cosserat rotations \({}_e \pmb {\varvec{\varTheta }}\) only; hence, \({}_i \pmb {\varvec{\varTheta }}\) are neglected in this NCCT. We examine consistent choice of kinematic variables, modifications of conservation and balance laws of classical continuum theories (CCTs) due to the presence of new physics of rotations and determine whether the consideration of rotations requires additional balance laws. NCC theories derived here are examined for thermodynamic and mathematical consistency and are compared with published works. Model problem studies are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(\bar{ \pmb {\varvec{x }}}\), \(\bar{x}_i\), \(\{\bar{x}\}\) :

Deformed coordinates

\({ \pmb {\varvec{x }}}\), \(x_i\), \(\{x\}\) :

Undeformed coordinates

\(\rho _{_{_{\!\!0}}}\) :

Reference density

\(\rho \) :

Density in Lagrangian description

\(\bar{\rho }\) :

Density in Eulerian description

\({\eta }\) :

Specific entropy in Lagrangian description

\(\bar{\eta }\) :

Specific entropy in Eulerian description

e :

Specific internal energy in Lagrangian description

\(\bar{e}\) :

Specific internal energy in Eulerian description

\({}_i \pmb {\varvec{\varTheta }}\), \({}_i\varTheta _i\), \(\{{}_i\varTheta \}\) :

Internal or classical rotations in Lagrangian description

\({}_e \pmb {\varvec{\varTheta }}\), \({}_e\varTheta _i\), \(\{{}_e\varTheta \}\) :

External or Cosserat or microrotations in Lagrangian description

\({}_t \pmb {\varvec{\varTheta }}\), \({}_t\varTheta _i\), \(\{{}_t\varTheta \}\) :

Total rotations in Lagrangian description

\( \pmb {\varvec{J }}\) :

Deformation gradient tensor in Lagrangian description

\({}_s \pmb {\varvec{J }}\) :

Symmetric part of deformation gradient tensor in Lagrangian description

\({}_a \pmb {\varvec{J }}\) :

Skew symmetric part of deformation gradient tensor in Lagrangian description

\({}^{\;d}\!\! \pmb {\varvec{J }}\) :

Displacement gradient tensor in Lagrangian description

\({}_{s}^{\;d}\!\! \pmb {\varvec{J }}\) :

Symmetric part of displacement gradient tensor in Lagrangian description

\({}_{a}^{\;d}\!\! \pmb {\varvec{J }}\) :

Skew symmetric part of displacement gradient tensor in Lagrangian description

\( {}^{\varTheta }\! \pmb {\varvec{J }} \) :

Rotation gradient tensor in Lagrangian description

\( {}^{{}_i\varTheta }\! \pmb {\varvec{J }} \) :

Internal rotation gradient tensor in Lagrangian description

\( {}_{\;s}^{{}_i \varTheta }\!\! \pmb {\varvec{J }} \) :

Symmetric part of internal rotation gradient tensor in Lagrangian description

\( {}_{\;a}^{{}_i \varTheta }\!\! \pmb {\varvec{J }} \) :

Skew symmetric part of internal rotation gradient tensor in Lagrangian description

\({}^{{}^{^r}\!\!\!{}_i\bar{\varTheta }}\!\!\!\!{}_s\bar{ \pmb {\varvec{J }}}\) :

Symmetric part of gradient of internal rotation rate tensor in Eulerian description

\( {}_{\;\,s}^{{}_i\varTheta }\!\overset{\,{{\textbf {.}}}}{ \pmb {\varvec{J }}} \) :

Rate of symmetric part of gradient of internal rotation tensor in Lagrangian description

\({{}^{^r}\!\!\!{}_i\bar{ \pmb {\varvec{\varTheta }}}}\) :

Internal rotation rate tensor in Eulerian description

\({}_i\overset{\,{{\textbf {.}}}}{ \pmb {\varvec{\varTheta }}}\) :

Internal rotation rate tensor in Lagrangian description

\( \pmb {\varvec{q }} \), \({q}_i\), \(\{q\}\) :

Heat vector in Lagrangian description

\(\bar{ \pmb {\varvec{q }} }\), \({\bar{q}}_i\), \(\{\bar{q}\}\) :

Heat vector in Eulerian description

\({ \pmb {\varvec{v }}}\), \({v}_i\), \(\{v\}\) :

Velocities in Lagrangian description

\(\bar{ \pmb {\varvec{v }}}\), \({\bar{v}}_i\), \(\{\bar{v}\}\) :

Velocities in Eulerian description

\( \pmb {\varvec{u }} \), \({u}_i\), \(\{u\}\) :

Displacements in Lagrangian description

\(\bar{ \pmb {\varvec{u }} }\), \({\bar{u}}_i\), \(\{\bar{u}\}\) :

Displacements in Eulerian description

\({ \pmb {\varvec{P }}}\) :

Average stress in Lagrangian description

\(\bar{ \pmb {\varvec{P }}}\) :

Average stress in Eulerian description

\( \pmb {\varvec{M }}\) :

Average moment in Lagrangian description

\(\bar{ \pmb {\varvec{M }}}\) :

Average moment in Eulerian description

\( \pmb {\varvec{\sigma }} \) :

, \(\sigma _{ij}\), \([\sigma ]\) Cauchy stress tensor in Lagrangian description

\(\bar{ \pmb {\varvec{\sigma }} }\) :

, \(\bar{\sigma }_{ij}\), \([\bar{\sigma }]\) Cauchy stress tensor in Eulerian description

\( {}_s \pmb {\varvec{\sigma }} \) :

Symmetric part of Cauchy stress tensor

\( {}_a \pmb {\varvec{\sigma }} \) :

Antisymmetric part of Cauchy stress tensor

\( {}^d_s \pmb {\varvec{\sigma }} \) :

Deviatoric part of the symmetric Cauchy stress tensor

\( {}^e_s \pmb {\varvec{\sigma }} \) :

Equilibrium part of the symmetric Cauchy stress tensor

\({\theta }\) :

Temperature in Lagrangian description

\({\bar{\theta }}\) :

Temperature in Eulerian description

k :

Thermal conductivity in Lagrangian description

p :

Thermodynamic or mechanical pressure in Lagrangian description

\(\bar{p}\) :

Thermodynamic or mechanical pressure in Eulerian description

\( \pmb {\varvec{g }} \), \({g}_i\), \(\{g\}\) :

Temperature gradient tensor in Lagrangian description

\(\bar{ \pmb {\varvec{g }} }\) :

, \({\bar{g}}_i\), \(\{\bar{g}\}\) Temperature gradient tensor in Eulerian description

\(\bar{ \pmb {\varvec{L }}}\) :

Velocity gradient tensor in Eulerian description

\(\bar{ \pmb {\varvec{D }}}\) :

Symmetric part of velocity gradient tensor in Eulerian description

CBL:

Conservation and balance laws

CCM:

Classical continuum mechanics

CCT:

Classical continuum theory

NCCT:

Nonclassical continuum theory

NCCM:

Nonclassical continuum mechanics

References

  1. Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, New York (2013)

    Book  MATH  Google Scholar 

  2. Eringen, A.C.: Mechanics of micromorphic materials. In: Gortler, H. (ed.) Proceeding of 11th International Congress of Applied Mechanics, pp. 131–138. Springer, Berlin (1964)

    Google Scholar 

  3. Eringen, A.C.: Simple microfluids. Int. J. Eng. Sci. 2(2), 205–217 (1964)

    Article  MATH  Google Scholar 

  4. Eringen, A.C.: A unified theory of thermomechanical materials. Int. J. Eng. Sci. 4, 179–202 (1966)

    Article  MATH  Google Scholar 

  5. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16(1), 1–18 (1966)

    Google Scholar 

  6. Eringen, A.C.: Mechanics of micromorphic continua. In: Kroner, E. (ed.) Mechanics of Generalized Continua, pp. 18–35. Springer, New York (1968)

    Chapter  Google Scholar 

  7. Eringen, A.C.: Theory of micropolar elasticity. In: Liebowitz, H. (ed.) Fracture, pp. 621–729. Academic Press, New York (1968)

    Google Scholar 

  8. Eringen, A.C.: Micropolar fluids with stretch. Int. J. Eng. Sci. 7(1), 115–127 (1969)

    Article  MATH  Google Scholar 

  9. Eringen, A.C.: Balance laws of micromorphic mechanics. Int. J. Eng. Sci. 8(10), 819–828 (1970)

    Article  MATH  Google Scholar 

  10. Eringen, A.C.: Theory of micromorphic materials with memory. Int. J. Eng. Sci. 10, 623–641 (1972)

    Article  MATH  Google Scholar 

  11. Eringen, A.C.: Theory of Micropolar Elasticity. Springer, New York (1990)

    MATH  Google Scholar 

  12. Eringen, A.C.: Balance laws of micromorphic continua revisited. Int. J. Eng. Sci. 30(6), 805–810 (1992)

    Article  MATH  Google Scholar 

  13. Eringen, A.C.: Linear theory of micropolar viscoelasticity. Int. J. Eng. Sci. 5(2), 191–204 (1967)

    Article  MATH  Google Scholar 

  14. Eringen, A.C.: Theory of thermomicrofluids. J. Math. Anal. Appl. 38(2), 480–496 (1972)

    Article  MATH  Google Scholar 

  15. Eringen, A.C.: Micropolar theory of liquid crystals. Liq. Cryst. Ordered Fluids 3, 443–473 (1978)

    Article  Google Scholar 

  16. Eringen, A.C.: Theory of thermo-microstretch fluids and bubbly liquids. Int. J. Eng. Sci. 28(2), 133–143 (1990)

    Article  MATH  Google Scholar 

  17. Eringen, A.C.: Continuum theory of microstretch liquid crystals. J. Math. Phys. 33, 4078 (1992)

    Article  ADS  MATH  Google Scholar 

  18. Green, A.E.: Micro-materials and multipolar continuum mechanics. Int. J. Eng. Sci. 3(5), 533–537 (1965)

    Article  Google Scholar 

  19. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17(2), 113–147 (1964)

    Article  MATH  Google Scholar 

  20. Green, A.E., Rivlin, R.S.: The relation between director and multipolar theories in continuum mechanics. Z. Ang. Math. Phys. ZAMP 18(2), 208–218 (1967)

    Article  MATH  Google Scholar 

  21. Kafadar, C.B., Eringen, A.C.: Micropolar media—I the classical theory. Int. J. Eng. Sci. 9(3), 271–305 (1971)

    Article  MATH  Google Scholar 

  22. Koiter, W.T.: Couple stresses in the theory of elasticity, I and II. Nederl. Akad. Wetensch. Proc. Ser. B. 67, 17–44 (1964)

    MATH  Google Scholar 

  23. Marin, M., Ochsner, A.: The effect of a dipolar structure on the Hölder stability in Green–Naghdi thermoelasticity. Continuum Mech. Thermodyn. 29, 1365–1374 (2017)

    Article  ADS  MATH  Google Scholar 

  24. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)

    Article  MATH  Google Scholar 

  25. Othman, M.I.A., Said, S., Marin, M.: A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three-phase-lag model. Int. J. Numer. Methods Heat Fluid Flow 29, 4788–4806 (2019)

    Article  Google Scholar 

  26. Pietraszkiewicz, W., Eremeyev, V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3), 774–787 (2009)

    Article  MATH  Google Scholar 

  27. Ramezani, S., Naghdabadi, R.: Energy pairs in the micropolar continuum. Int. J. Solids Struct. 44(14), 4810–4818 (2007)

    Article  MATH  Google Scholar 

  28. Ramezani, S., Naghdabadi, R., Sohrabpour, S.: Constitutive equations for micropolar hyper-elastic materials. Int. J. Solids Struct. 46(14), 2765–2773 (2009)

    Article  MATH  Google Scholar 

  29. Smith, G.F.: On isentropic integrity bases. Arch. Ration. Mech. Anal. 18(4), 282–292 (1965)

    Article  MATH  Google Scholar 

  30. Smith, G.F.: On a fundamental error in two papers of C.C. Wang, ‘on representations for isotropic functions, part I and part II’. Arch. Ration. Mech. Anal. 36, 161–165 (1970)

    Article  Google Scholar 

  31. Smith, G.F.: On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Eng. Sci. 9, 899–916 (1971)

    Article  MATH  Google Scholar 

  32. Spencer, A.J.M.: Theory of Invariants. Chapter 3 ‘Treatise on Continuum Physics, I’ Edited by A. C. Eringen. Academic Press (1971)

  33. Spencer, A.J.M., Rivlin, R.S.: The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch. Ration. Mech. Anal. 2, 309–336 (1959)

    Article  MATH  Google Scholar 

  34. Spencer, A.J.M., Rivlin, R.S.: Further results in the theory of matrix polynomials. Arch. Ration. Mech. Anal. 4, 214–230 (1960)

    Article  MATH  Google Scholar 

  35. Surana, K.S., Alverio, E.N.: Consistency and validity of the mathematical models and the solution methods for BVPS and IVPS based on energy methods and principle of virtual work for homogeneous isotropic and non-homogeneous non-isotropic solid continua. Appl. Math. 11(07), 546–578 (2020)

    Article  Google Scholar 

  36. Surana, K.S., Joy, A.D., Reddy, J.N.: Non-classical continuum theory for solids incorporating internal rotations and rotations of Cosserat theories. Continuum Mech. Thermodyn. 29(2), 665–698 (2017)

    Article  ADS  MATH  Google Scholar 

  37. Surana, K.S., Long, S.W., Reddy, J.N.: Necessity of law of balance/equilibrium of moment of moments in non-classical continuum theories for fluent continua. Acta Mech. 22(7), 2801–2833 (2018)

    Article  MATH  Google Scholar 

  38. Surana, K.S., Mysore, D., Reddy, J.N.: Non-classical continuum theories for solid and fluent continua and some applications. Int. J. Smart Nano Mater. 10(1), 28–89 (2019)

    Article  ADS  Google Scholar 

  39. Surana, K.S., Powell, M.J., Reddy, J.N.: A more complete thermodynamic framework for solid continua. J. Therm. Eng. 1(6), 446–459 (2015)

    Google Scholar 

  40. Surana, K.S., Reddy, J.N.: The Finite Element Method for Boundary Value Problems: Mathematics and Computations. CRC/Taylor and Francis, Boca Raton (2016)

    Book  Google Scholar 

  41. Surana, K.S., Reddy, J.N.: The Finite Element Method for Initial Value Problems. CRC/Taylor and Francis, Boca Raton (2017)

    Book  MATH  Google Scholar 

  42. Surana, K.S., Reddy, J.N., Nunez, D., Powell, M.J.: A polar continuum theory for solid continua. Int. J. Eng. Res. Ind. Appl. 8(2), 77–106 (2015)

    Google Scholar 

  43. Surana, K.S., Shanbhag, R.S., Reddy, J.N.: Necessity of law of balance of moment of moments in non-classical continuum theories for solid continua. Meccanica 53(11), 2939–2972 (2018)

    Article  MATH  Google Scholar 

  44. Surana, K.S.: Advanced Mechanics of Continua. CRC/Taylor and Francis, Boca Raton (2015)

    MATH  Google Scholar 

  45. Surana, K.S.: Classical Continuum Mechanics, 2nd edn. CRC/Taylor and Francis, Boca Raton (2021)

    Book  MATH  Google Scholar 

  46. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    Article  MATH  Google Scholar 

  47. Victor, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids 21(2), 210–221 (2016)

    Article  MATH  Google Scholar 

  48. Voigt, W.: Theoretische Studien über die Wissenschaften zu Elastizitätsverhältnisse der Krystalle. Abhandl. Ges. Göttingen 34 (1887)

  49. Wang, C.C.: On representations for isotropic functions, part I. Arch. Ration. Mech. Anal. 33, 249 (1969)

    Article  Google Scholar 

  50. Wang, C.C.: On representations for isotropic functions, part II. Arch. Ration. Mech. Anal. 33, 268 (1969)

    Article  Google Scholar 

  51. Wang, C.C.: A new representation theorem for isotropic functions, part I and part II. Arch. Ration. Mech. Anal. 36, 166–223 (1970)

    Article  Google Scholar 

  52. Wang, C.C.: Corrigendum to ‘representations for isotropic functions’. Arch. Ration. Mech. Anal. 43, 392–395 (1971)

    Article  Google Scholar 

  53. Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  54. Zheng, Q.S.: On the representations for isotropic vector-valued, symmetric tensor-valued and skew-symmetric tensor-valued functions. Int. J. Eng. Sci. 31, 1013–1024 (1993)

    Article  MATH  Google Scholar 

  55. Zheng, Q.S.: On transversely isotropic, orthotropic and relatively isotropic functions of symmetric tensors, skew-symmetric tensors, and vectors. Int. J. Eng. Sci. 31, 1399–1453 (1993)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

First author is grateful for his endowed professorships and the department of mechanical engineering of the University of Kansas for providing financial support to the second author. The computational facilities provided by the Computational Mechanics Laboratory of the mechanical engineering department are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Surana.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surana, K.S., Mathi, S.S.C. Thermodynamic consistency of nonclassical continuum theories for solid continua incorporating rotations. Continuum Mech. Thermodyn. 35, 17–59 (2023). https://doi.org/10.1007/s00161-022-01163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01163-y

Keywords

Navigation