Skip to main content
Log in

Investigation of interlaminar stresses surrounding circular hole in composite laminates under uniform heat flux

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this paper, interlaminar stresses in a symmetrical laminated composite plate with a circular hole under uniform heat flux were examined. The analytical solution was achieved based on the boundary-layer theory by Lekhnitskii’s solution. The stress relations related out-of-plane stress components were obtained by variational principle states, the minimum principle of complementary energy, zero-order equilibrium relations and boundary conditions for each layer. The unknown factors in the stress relations were obtained by the equilibrium equation in integral form. This solution prepared a calculation method via adaptability for examining the 3D thermal stresses in perforated laminated with curved boundaries. The results were obtained for \([45/-45]\)s, [0/90]s, \([30/-30]\)s lay-ups made of graphite/epoxy and glass/epoxy materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pipes, R.B., Pagano, N.J.: Interlaminar stresses in composite laminates under uniform axial extension. J. Compos. Mater. 4, 538–48 (1970). https://doi.org/10.1177/002199837000400409

    Article  ADS  Google Scholar 

  2. Wang, A.S.D., Crossman, F.W.: Some new results on edge effect in symmetric composite laminates. J. Compos. Mater. 11, 92–106 (1977). https://doi.org/10.1177/002199837701100110

    Article  ADS  Google Scholar 

  3. Wang, S.S., Choi, I.: Boundary-layer effects in composite laminates: part 1 free-edge stress singularities. J. Appl. Mech. Trans. ASME 49, 541–8 (1982). https://doi.org/10.1115/1.3162514

    Article  ADS  MATH  Google Scholar 

  4. Wang, S.S., Choi, I.: Boundary-layer effects in composite laminates-part 2. J. Appl. Mech. 49, 541–8 (1982)

    Article  ADS  Google Scholar 

  5. Kassapoglou, C., Lagace, P.A.: An efficient method for the calculation of interlaminar stresses in composite materials. J. Appl. Mech. Trans. ASME 53, 744–50 (1986). https://doi.org/10.1115/1.3171853

    Article  ADS  MATH  Google Scholar 

  6. Yazdani Sarvestani, H., Naghashpour, A.: Analysis of free edge stresses in composite laminates using higher order theories. Indian J. Mater. Sci. 2014, 1–15 (2014). https://doi.org/10.1155/2014/253018

    Article  MATH  Google Scholar 

  7. Matsunaga, H.: A comparison between 2-D single-layer and 3-D layerwise theories for computing interlaminar stresses of laminated composite and sandwich plates subjected to thermal loadings. Compos. Struct. 64, 161–77 (2004). https://doi.org/10.1016/j.compstruct.2003.08.001

    Article  Google Scholar 

  8. Jafari, M., Chaleshtari, M.H.B.: Optimum design of effective parameters for orthotropic plates with polygonal cutout. Latin Am. J. Solids Struct. 14, 906–929 (2017). https://doi.org/10.1590/1679-78253437

    Article  Google Scholar 

  9. Jafari, M., Chaleshtari, M.H.B., Abdolalian, H.: General solution of stress field in exponential functionally graded material plates containing a quasi-rectangular cutout. J. Compos. Mater. 53, 405–421 (2019). https://doi.org/10.1177/0021998318785950

    Article  ADS  Google Scholar 

  10. Jafari, M., Jafari, M.: Effect of hole geometry on the thermal stress analysis of perforated composite plate under uniform heat flux. J. Compos. Mater. 53, 1079–1095 (2019). https://doi.org/10.1177/0021998318795279

    Article  ADS  Google Scholar 

  11. Jafari, M., Bayati Chaleshtari, M.H.: Using dragonfly algorithm for optimization of orthotropic infinite plates with a quasi-triangular cut-out. Eur. J. Mech. A/Solids 66, 1–14 (2017). https://doi.org/10.1016/j.euromechsol.2017.06.003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bayati Chaleshtari, M.H., Jafari, M.: Optimization of finite plates with polygonal cutout under in-plane loading by gray wolf optimizer. J. Strain Anal. Eng. Des. 52, 365–79 (2017). https://doi.org/10.1177/0309324717716270

    Article  Google Scholar 

  13. Bayati Chaleshtari, M.H., Khoramishad, H.: Investigation of the effect of cutout shape on thermal stresses in perforated multilayer composites subjected to heat flux using an analytical method. Eur. J. Mech. A/Solids 91, 104412 (2022). https://doi.org/10.1016/j.euromechsol.2021.104412

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bayati Chaleshtari, M.H., Khoramishad, H.: Effect of stacking sequence on thermal stresses in laminated plates with a quasi-square cutout using the complex variable method. Struct. Eng. Mech. 77, 245–259 (2021). https://doi.org/10.12989/sem.2021.77.2.245

    Article  Google Scholar 

  15. Bayati Chaleshtari, M.H., Jafari, M., Khoramishad, H.: Effect of cutout geometry on the failure strength of symmetric laminates under uniform heat flux. J. Reinf. Plast. Compos. 41, 81–98 (2022). https://doi.org/10.1177/07316844211048772

    Article  Google Scholar 

  16. Wu, X.J., Cheng, S.M.: A higher order theory for plane stress conditions of laminates consisting of isotropic layers. J. Appl. Mech. 66, 95–100 (2018). https://doi.org/10.1115/1.2789174

    Article  Google Scholar 

  17. Folias, E.S.: On the interlaminar stresses of a composite plate around the neighborhood of a hole. Int. J. Solids Struct. 25, 1193–200 (1989). https://doi.org/10.1016/0020-7683(89)90076-0

    Article  Google Scholar 

  18. Folias, E.S.: Boundary layer effects of interlaminar stresses adjacent to a hole in a laminated composite plate. Int. J. Solids Struct. 29, 171–86 (1992). https://doi.org/10.1016/0020-7683(92)90105-3

    Article  MATH  Google Scholar 

  19. Lucking, W.M., Hoa, S.V., Sankar, T.S.: The effect of geometry on interlaminar stresses of [0/90]s composite laminates with circular holes. J. Compos. Mater. 18, 188–98 (1984). https://doi.org/10.1177/002199838401800207

    Article  ADS  Google Scholar 

  20. Katerelos, D.T.G.: Investigation of the free edge interlaminar stresses dependence on the ply thickness and orientation. Adv. Compos. Lett. 15, 15–21 (2006). https://doi.org/10.1177/096369350601500102

    Article  Google Scholar 

  21. Guo, Z., Han, X., Zhao, X., Zhu, X.: Finite element analysis of interlaminar stresses of composite laminates stitched around a circular hole. Appl. Compos. Mater. 34, 730–6 (2012). https://doi.org/10.1007/s10443-011-9234-7

    Article  Google Scholar 

  22. Ahn, J.S., Kim, Y.W., Woo, K.S.: Analysis of circular free edge effect in composite laminates by p-convergent global-local model. Int. J. Mech. Sci. 66, 149–55 (2013). https://doi.org/10.1016/j.ijmecsci.2012.11.003

    Article  Google Scholar 

  23. Vidal, P., Gallimard, L., Polit, O.: Modeling of composite plates with an arbitrary hole location using the variable separation method. Comput. Struct. 192, 157–70 (2017). https://doi.org/10.1016/j.compstruc.2017.07.020

    Article  Google Scholar 

  24. Li, L., Yue, Z.F.: Analysis of interlaminar stresses and failure around hole edge for composite laminates under in-plane loading. Key Eng. Mater. 324–325, 1027–30 (2006). https://doi.org/10.4028/www.scientific.net/kem.324-325.1027

    Article  Google Scholar 

  25. Yen, W.J., Hwu, C.: Interlaminar stresses around hole boundaries of composite laminates subjected to in-plane loading. Compos. Struct. 24, 299–310 (1993). https://doi.org/10.1016/0263-8223(93)90024-K

    Article  ADS  Google Scholar 

  26. Nyman, T., Friberg, M.: Interlaminar stresses in composite notched and unnotched laminates. J. Reinf. Plast. Compos. 19, 34–57 (2000). https://doi.org/10.1177/073168440001900103

    Article  Google Scholar 

  27. Zhen, W., Wanji, C.: Stress analysis of laminated composite plates with a circular hole according to a single-layer higher-order model. Compos. Struct. 90, 122–9 (2009). https://doi.org/10.1016/j.compstruct.2009.02.010

    Article  Google Scholar 

  28. Hufenbach, W., Gottwald, R., Grüber, B., Lepper, M., Zhou, B.: Stress concentration analysis of thick-walled laminate composites with a loaded circular cut-out by using a first-order shear deformation theory. Compos. Sci. Technol. 68, 2238–44 (2008). https://doi.org/10.1016/j.compscitech.2008.04.005

    Article  Google Scholar 

  29. Nath, S.K.D., Wong, C.H., Kim, S.G.: A finite-difference solution of boron/epoxy composite plate with an internal hole subjected to uniform tension/displacements using displacement potential approach. Int. J. Mech. Sci. 58, 1–12 (2012). https://doi.org/10.1016/j.ijmecsci.2012.01.013

    Article  Google Scholar 

  30. Reiss, E.L.: Extension of an infinite plate with a circular hole. J. Soc. Ind. Appl. Math. 11, 840–54 (1963)

    Article  MathSciNet  Google Scholar 

  31. Marin, M., Ochsner, A., Craciun, E.M.: A generalization of the Saint-Venant’s principle for an elastic body with dipolar structure. Contin. Mech. Thermodyn. 32, 269–278 (2020). https://doi.org/10.1007/s001161-019-00827-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Marin, M., Ochsner, A., Craciun, E.M.: A generalization of the Gurtin’s variational principle in thermoelasticity without energy dissipation of dipolar bodies. Contin. Mech. Thermodyn. 32, 1685–1694 (2020). https://doi.org/10.1007/s00161-020-00873-5

    Article  ADS  MathSciNet  Google Scholar 

  33. Spilker, R.L.: A traction-free-edge hybrid-stress element for the analysis of edge effects in cross-ply laminates. Comput. Struct. 12, 167–79 (1980). https://doi.org/10.1016/0045-7949(80)90002-4

    Article  MathSciNet  MATH  Google Scholar 

  34. Da, Zhang K., Ueng, C.E.S.: A simplified approach for interlaminar stresses around a Hole in [0/90]s laminates. J. Compos. Mater. 22, 192–202 (1988). https://doi.org/10.1177/002199838802200206

    Article  Google Scholar 

  35. Yoseph, Z.B.P., Avrashi, J.: Interlaminar stress analysis for laminated plates containing a curvilinear hole. Comput. Struct. 21, 917–32 (1985)

    Article  Google Scholar 

  36. Ko, C.C., Lin, C.C.: Method for calculating the interlaminar stresses in symmetric laminates containing a circular hole. AIAA J. 30, 197–204 (1992). https://doi.org/10.2514/3.10900

    Article  ADS  MATH  Google Scholar 

  37. Ko, C.C., Lin, C.C.: Interlaminar stresses around a hole in symmetric cross-ply laminates under bending/torsion. AIAA J. 31, 1118–24 (1993). https://doi.org/10.2514/3.11736

    Article  ADS  MATH  Google Scholar 

  38. Jen, M.H.R., Kau, Y.S., Hsu, J.M.: Interlaminar stresses in a centrally notched composite laminate. Int. J. Solids Struct. 30, 2911–28 (1993). https://doi.org/10.1016/0020-7683(93)90203-J

    Article  MATH  Google Scholar 

  39. Zhang, C., Lessard, L.B., Nemes, J.A.: A closed-form solution for stresses at curved free edges in composite laminates: a variational approach. Compos. Sci. Technol. 57, 1341–54 (1997). https://doi.org/10.1016/s0266-3538(97)00061-4

    Article  Google Scholar 

  40. Florence, A.L., Goodier, J.N.: Thermal stresses due to disturbance of uniform heat flow by an insulated ovaloid hole. J. Appl. Mech. 27, 635–9 (1960). https://doi.org/10.1115/1.3644074

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard-Marius Craciun.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

\(\overline{S}\) is a stiffness matrix is obtained as follows:

$$\begin{aligned}&\overline{S}_{11}=S_{11} \cos ^4 \gamma + \left( 2S_{12}+S_{66} \right) \sin ^2\gamma \cos ^2 \gamma + S_{22} \sin ^4 \gamma \nonumber \\&\overline{S}_{12}=\left( S_{11}+S_{22}-S_{66} \right) \sin ^2 \gamma \cos ^2 \gamma + S_{12} \left( \cos ^4 \gamma +\sin ^4 \gamma \right) \nonumber \\&\overline{S}_{13}= S_{13} \cos ^2 \gamma + S_{23}\sin ^2 \gamma \nonumber \\&\overline{S}_{16}= \left( 2S_{11}-2S_{12}-S_{66} \right) \sin \gamma - \left( 2S_{22}-2S_{12}-S_{66} \right) \sin ^3 \gamma \cos \gamma \nonumber \\&\overline{S}_{22}= S_{11} \sin ^4 \gamma + \left( 2S_{12}+s_{66} \right) \sin ^2 \gamma \cos ^2 \gamma + S_{22} \cos ^4 \gamma \nonumber \\&\overline{S}_{23}= S_{13} \sin ^2 \gamma + S_{23} \cos ^2 \gamma \nonumber \\&\overline{S}_{26}= \left( 2S_{11}-2S_{12}-S_{66} \right) \sin ^3 \gamma \cos \gamma - \left( 2S_{22}-2S_{12}-S_{66} \right) \sin \gamma \cos ^3 \gamma \nonumber \\&\overline{S}_{33}= S_{33} \nonumber \\&\overline{S}_{36}= 2 \sin \gamma \cos \gamma \left( S_{13}-S_{23} \right) \nonumber \\&\overline{S}_{44}= S_{44} \cos ^2 \gamma + S_{55} \sin ^2 \gamma \nonumber \\&\overline{S}_{46}= \sin \gamma \cos \gamma \left( S_{55}-S_{44} \right) \nonumber \\&\overline{S}_{55}= S_{44} \sin ^2 \gamma + S_{55} \cos ^2 \gamma \nonumber \\&\overline{S}_{66}= 2 \left( 2S_{11}+2S_{22}-4S_{12}-S_{66} \right) \sin ^2 \gamma \cos ^2 \gamma + S_{66} \left( \cos ^4 \gamma + \sin ^4 \gamma \right) . \end{aligned}$$
(A.1)

From the engineering constants, the compliance coefficients along the principal material directions are obtained using

$$\begin{aligned}&S_{11} = \frac{1}{E_1}&S_{12} = - \frac{\eta _{21}}{E_2}&S_{13} = \frac{\eta _{31}}{E_3}&\nonumber \\&S_{22} = \frac{1}{E_2}&S_{23} = - \frac{\eta _{32}}{E_3}&S_{33} = \frac{1}{E_3}&\nonumber \\&S_{44} = \frac{1}{G_{23}}&S_{55} = \frac{1}{G_{13}}&S_{66} = \frac{1}{G_{12}}.&\end{aligned}$$
(A.2)

The \(P_{ij}\) coefficients in Eqs. (37) and (38):

(A.3)

where \(o_1 = c_{12}^{(\ell )}\) and \(o_2 = c_{32}^{(\ell )}\) and \(\left. \varvec{\varTheta } = \sigma _{\theta \theta }^{0 \;\, 2} \right| _{\ell =0}\). The energy equation can also be rewritten as follows:

$$\begin{aligned} \delta {\varvec{\varPi }}_c =&\delta \left\{ \frac{-t^2}{4 \lambda _1^2 \left( 1 + \lambda _2^2 \right) \lambda _2^2} \left( \lambda _1^5 R \left( \lambda _2^5 P_{33} + \lambda _2^4 P_{33} \right) +\lambda _1^4 \lambda _2^4 P_{33} t + \lambda _1^3 R \left( \lambda _2^4 \left( -2P_{36}-2P_{13} + P_{44} + P_{55} \right) \right. \right. \right. \nonumber \\&\left. \left. \left. + 2 \lambda _2^3 \left( P_{45} + P_{44} - P_{36} + P_{55} - 2P_{13} \right) +\lambda _2 P_{44} \right) + \lambda _1^2 \left( \lambda _2^4 t \left( \frac{1}{2}P_{44}+P_{13}+P_{36}+\frac{1}{2}P_{55}+P_{45} \right) \right. \right. \right. \nonumber \\&\left. \left. \left. + \lambda _2^3 t \left( 3 P_{45} - P_{36} + P_{44} + 2P_{55} \right) + \lambda _2^2 t \left( \frac{1}{2} P_{44} + \frac{1}{2} P_{55} + P_{13} \right) \right) + \lambda _1 \left( \lambda _2^4 R \left( 2 P_{16} + P_{11} + P_{66} \right) \right. \right. \right. \nonumber \\&\left. \left. \left. + \lambda _2^3 R \left( 2 P_{66} + 6 P_{16} + 4 P_{11} \right) +\lambda _2 R \left( 4 P_{16} + 4 P_{11} + P_{66} \right) + \lambda _1 \lambda _2 R P_{11} \right) + \lambda _2^4 t \left( \frac{1}{2} P_{11} + P_{16} + \frac{1}{2} P_{66} \right) \right. \right. \nonumber \\&\left. \left. + \lambda _2^3 t \left( 2 P_{11} + 3 P_{16} + P_{66} \right) + \lambda _2^2 t \left( 4 P_{11} + 4 P_{16} + \frac{1}{2} P_{66} \right) + 2 \lambda _2 P_{11} t + \frac{1}{2} P_{11} t \right) \right\} = 0. \end{aligned}$$
(A.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, M., Chaleshtari, M.H.B. & Craciun, EM. Investigation of interlaminar stresses surrounding circular hole in composite laminates under uniform heat flux. Continuum Mech. Thermodyn. 34, 1143–1158 (2022). https://doi.org/10.1007/s00161-022-01106-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01106-7

Keywords

Navigation