Skip to main content
Log in

A Review on Silicone Rubber

  • Review
  • Published:
National Academy Science Letters Aims and scope Submit manuscript

Abstract

Silicone rubber’s special features such as “organosiloxanes polymer” has been originated from its unique molecular structure that they carry both inorganic and organic properties unlike other organic rubbers. In other words, due to the Si–O bond of silicone rubber and its inorganic properties, silicone rubber was superior to ordinary organic rubbers in terms of heat resistance, chemical stability, electrical insulating, abrasion resistance, weatherability and ozone resistance. With these unique characteristics, silicone rubber has been widely used to replace petrochemical products in various industries like aerospace, munitions industry, automobile, construction, electric and electronics, medical and food processing industry. Recently, these scopes of silicone applications have been expanding at a great speed by the demand of industries that want more reliable elastomer. This paper reviews on synthesis, general properties, applications and nanocomposites of silicone rubber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun DH, Gurevich AB, Kaufmann LJ, Bent BE (1996) A new approach to understanding the Rochow process: synthesis of methylchlorosilanes from CH3 + Cl monolayers on Cu3Si in vacuum. Stud Surf Sci Catal 101:307–315

    Article  Google Scholar 

  2. Dalen MJ, Berg PJ (1970) Thermodynamics of silicon compounds II. Ethyl- and phenylchlorosilanes. J Organomet Chem 24(2):277–283

    Article  Google Scholar 

  3. Yoo BR, Jung N (2004) Synthesis of organosilicon compounds by new direct reactions. Adv Organomet Chem 50:145–177

    Article  Google Scholar 

  4. Watanabe H, Asami M, Nagai Y (1980) Convenient laboratory synthesis of vinylic silicon compounds via the reactions of acetylene with hydrosilanes catalyzed by group-VIII metal phosphine complexes. J Organomet Chem 195(3):363–373

    Article  Google Scholar 

  5. Iojoiu C, Abadieb JM et al (2000) Synthesis and photocrosslinking of benzyl acrylate substituted polydimethylsiloxanes. Eur Polym J 36(10):2115–2123

    Article  Google Scholar 

  6. Buyl F (2001) Silicone sealants and structural adhesives. Int J Adhes Adhes 21(5):411–422

    Article  Google Scholar 

  7. Palaprat G, Ganachaud F (2003) Synthesis of polydimethylsiloxane microemulsions by self-catalyzed hydrolysis/condensation of dichlorodimethylsilane. C R Chim 6(11–12):1385–1392

    Article  Google Scholar 

  8. Katherine L, Ulman GA, Gornowicz KR, Larson LC (1989) Drug permeability of modified silicone polymers. I. Silicone–organic block copolymers. J Control Release 10(3):251–260

    Article  Google Scholar 

  9. Parbhoo B, O’hare LA, Leadley SR (2002) Fundamental aspects of adhesion technology in silicones, chapt 14. In: Adhesion Science and Engineering, vol 1: the mechanics of adhesion, pp 677–709

  10. Stelian V, Angelica V, Stefan O (2002) Interpenetrating polymer networks based on polyurethane and polysiloxane. Eur Polym J 38(4):829–835

    Article  Google Scholar 

  11. Patel M, Skinner AR, Chaudhry A, Billingham NC, Mahieu B (2004) Impact of thermal ageing on the tincatalyst species in room temperature vulcanized polysiloxane rubbers. Polym Degrad Stab 83(1):157–161

    Article  Google Scholar 

  12. Tang Y, Tsiang R (1999) Rheological, extractive and thermal studies of the room temperature vulcanized polydimethylsiloxane. Polymer 40(22):6135–6146

    Article  Google Scholar 

  13. Kim BH, Cho MS, Kim MA, Woo HG (2003) One-pot synthesis of poly (alkoxysilane) by Si–Si/Si–O dehydrocoupling of silanes with alcohols using Group IV and VIII metallocene complexes. J Organomet Chem 685(1–2):93–98

    Article  Google Scholar 

  14. Merker RL, Scott MJ, Haberland GG (1964) Random and block copolymers of poly (tetramethyl-p-silphenylene-siloxane) and polydimethylsiloxane. J Polym Sci A Gen Pap 2(1):31–44

    Article  Google Scholar 

  15. Benahmed A, Lam R, Rechner N, Ho CM (2007) Period and height control during the microcontact printing of alkoxysilane for optical gratings. J Micro/Nanolith MEMS MOEMS 6(2):023007-1-5

    Article  Google Scholar 

  16. Bueche AM (1955) The curing of silicone rubber with benzoyl peroxide. J Polym Sci 15(79):105–120

    Article  Google Scholar 

  17. Thomas DK (1964) Stress/strain and swelling properties of a peroxide-cured methylvinyl silicone. Polymer 5:463–470

    Article  Google Scholar 

  18. Warley RL, Feke DL, Manas-Zloczower I (2005) Effect of peroxide crosslinking on the dynamic modulus of silicone rubber. J Appl Polym Sci 97(4):1504–1512

    Article  Google Scholar 

  19. Hartung HA, Berger SE (1962) Crosslinking of vinylsilicone resins initiated by dicumyl peroxide. J Appl Polym Sci 6(22):474–479

    Article  Google Scholar 

  20. Lopez LM, Cosgrove AB, Hernandez-Ortiz JP, Osswald TA (2007) Modeling the vulcanization reaction of silicone rubber. Polym Eng Sci 47(5):675–683

    Article  Google Scholar 

  21. Hamdani S, Longuet C, Lopez-Cuesta JM, Ganachaud F (2010) Calcium and aluminium-based fillers as flame-retardant additives in silicone matrices. I. Blend preparation and thermal properties. Polym Degrad Stab 95(9):1911–1919

    Article  Google Scholar 

  22. Princy KG, Joseph R, Kartha CS (1998) Studies on conductive silicone rubber compounds. J Appl Polym Sci 69(5):1043–1050

    Article  Google Scholar 

  23. Liu YR, Huang YD, Liu L (2007) Thermal stability of POSS/methylsilicone nanocomposites. Compos Sci Technol 67:2864–2876

    Article  Google Scholar 

  24. Mark JE, Erman B, Eirich FR (1994) Science and technology of rubber, 2nd edn. Academic, San Diego

    Google Scholar 

  25. UL94 (2006) Tests for flammability of plastics for parts in devices and applications

  26. Chen D, Yi S, Fang P, Zhong Y, Huang C, Wu X (2011) Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using octa[(trimethoxysilyl)ethyl]-POSS as cross-linker. React Funct Polym 71(4):502–511

    Article  Google Scholar 

  27. Chen D, Yi S, Wu W, Zhong Y, Liao J, Huang C, Shi W (2010) Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using vinyl-POSS derivatives as cross linking agents. Polymer 51(17):3867–3878

    Article  Google Scholar 

  28. Amin M, Akbar M, Amin S (2007) Hydrophobicity of silicone rubber used for outdoor insulation (an overview). Rev Adv Mater Sci 16:10–26

    Google Scholar 

  29. Meng Y, Wei Z, Lu YL, Zhang LQ (2012) Structure, morphology, and mechanical properties of polysiloxane elastomer composites prepared by in situ polymerization of zinc dimethacrylate. eXPRESS Polym Lett 6(11):882–894

    Article  Google Scholar 

  30. Hodorog ADR et al (2012) Thermo-sensitive polymers based on graft polysiloxanes. Polym Bull 69(5):579–595

    Article  Google Scholar 

  31. Ghanbari-Siahkali A et al (2005) Investigation of the hydrothermal stability of cross-linked liquid silicone rubber (LSR). Polym Degrad Stab 90(3):471–480

    Article  Google Scholar 

  32. Tyagi D, Yílgör I, McGrath JE, Wilkes GL (1984) Segmented organosiloxane copolymers: 2. Thermal and mechanical properties of siloxane–urea copolymers. Polymer 25(12):1807–1816

    Article  Google Scholar 

  33. McMillin CR (2006) Biomedical applications of rubbers and elastomers. Rubber Chem Technol 79(3):500–519

    Article  Google Scholar 

  34. Tan J, Li X, Zee JWV (2007) Degradation of silicone rubber under compression in a simulated PEM fuel cell environment. J Power Sources 172(2):782–789

    Article  Google Scholar 

  35. Gupta BR, Pattanayak S (1992) Thermal conductivity and thermal diffusivity of silicone-poly (styrelene butadiene) rubber blends from 60 to 300 K. Cryogenics 32(7):623–627

    Article  Google Scholar 

  36. Hamdani S, Longuet C, Lopez-Cuesta JM, Ganachaud F (2009) Flame retardancy of silicone-based materials. Polym Degrad Stab 94(4):465–495

    Article  Google Scholar 

  37. Saleem A, Frormann L, Soever A (2010) Fabrication of extrinsically conductive silicone rubbers with high elasticity and analysis of their mechanical and electrical characteristics. Polymers 2:200–210

    Article  Google Scholar 

  38. Morari C, Balan I, Pintea J, Chitanu E, Iordache I (2011) Electrical conductivity and electromagnetic shielding effectiveness of silicone rubber filled with ferrite and graphite powders. Prog Electromagn Res M 21:93–104

    Article  Google Scholar 

  39. Mazurek MH (2007) Silicones, comprehensive organometallic chemistry III, from fundamentals to applications. Elsevier, Amsterdam, pp 651–697

    Book  Google Scholar 

  40. Southwart DW (1976) Comparison of bound rubber and swelling in silicone rubber/silica mixes and in silicone rubber vulcanizates. Polymer 17(2):147–152

    Article  Google Scholar 

  41. Ettouney H, Majeed U (1997) Permeability functions for pure and mixture gases in silicone rubber and polysulfone membranes: dependence on pressure and composition. J Membr Sci 135(2):251–261

    Article  Google Scholar 

  42. Lewis FM (1962) The science and technology of silicone rubber. Rubber Chem Technol 35(5):1222–1275

    Article  Google Scholar 

  43. Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2011) Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater 7(5):2015–2028

    Article  Google Scholar 

  44. Gu X, Ding F, Yang Y, Liu J (2011) Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 93:204–230

    Article  Google Scholar 

  45. Momen G, Farzaneh M (2011) Survey of micro/nano filler use to improve silicone rubber for outdoor insulators. Rev Adv Mater Sci 27:1–13

    Google Scholar 

  46. Rao H, Zhang Z, Tian Y (2012) Preparation and high oxygen-enriching properties of cross-linking polydimethylsiloxane/SiO2 nanocomposite membranes for air purification. Transp Phenom Fluid Mech. doi:10.1002/aic.13860

    Google Scholar 

  47. Al-Hartomy OA, Al-Solamy F, Al-Ghamdi A, Dishovsky N, Iliev V, El-Tantawy F (2011) Dielectric and microwave properties of siloxane rubber/carbon black nanocomposites and their correlation. Int J Polym Sci. doi:10.1155/2011/837803

    Google Scholar 

  48. Huang Y, Wang M, Qiu H, Xiang B, Zhang Y (2008) Research and preparation method of flexible tactile sensor material. doi:10.5772/6630

  49. Kim HS, Kwon SM, Lee KH, Yoon JS, Jin HJ (2008) Preparation and characterization of silicone rubber/functionalized carbon nanotubes composites via in situ polymerization. J Nanosci Nanotechnol 8:5551–5554

    Article  Google Scholar 

  50. Wen J, Li Y, Zuo Y, Zhou G, Li J, Jiang L, Xu W (2008) Preparation and characterization of nano-hydroxyapatite/silicone rubber composite. Mater Lett 62(19):3307–3309

    Article  Google Scholar 

  51. Yamashita RI, Takeuchi Y, Kikuchi H, Shirai K, Yamauchi T, Tsubokawa N (2006) Preparation of antibacterial polymer-grafted nano-sized silica and surface properties of silicone rubber filled with the silica. Polym J 38:844–851

    Article  Google Scholar 

  52. Frogley MD, Ravich D, Wagner HD (2003) Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos Sci Technol 63:1647–1654

    Article  Google Scholar 

  53. Simon MW, Stafford KT, Ou DL (2008) Nanoclay reinforcement of liquid silicone rubber. J Inorg Organomet Polym Mater Sept 18(3):364–373

    Article  Google Scholar 

  54. Chen L, Lu L, Wu D, Chen G (2007) Silicone rubber/graphite nanosheet electrically conducting nanocomposite with a low percolation threshold. Polym Compos 28(4):493–498

    Article  Google Scholar 

  55. Zhou H, Wang H, Niu H, Gestos A, Wang X, Lin T (2012) Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Silicone rubber nanocomposites containing a small amount of hybrid fillers with enhanced electrical sensitivity. Adv Mater 24(18):2409–2412

    Article  Google Scholar 

  56. Witt N, Tang Y, Ye L, Fang L (2013) Silicone rubber nanocomposites containing a small amount of hybrid fillers with enhanced electrical sensitivity. Mater Des 45:548–554

    Article  Google Scholar 

  57. Liu X, Li Y, Liu Y, Zhu G, Liu J, Yang W (2011) Capillary supported ultrathin homogeneous silicalite-poly(dimethylsiloxane) nanocomposite membrane for bio-butanol recovery. J Membr Sci 369(1–2):228–232

    Article  Google Scholar 

  58. Hosseini MS, Tazzoli-Shadpour M, Amjadi I, Katbab AA, Jaefargholi-Rangraz E (2011) Nanobiocomposites with enhanced cell proliferation and improved mechanical properties based on organomodified-nanoclay and silicone rubber. World Acad Sci Eng Technol 60:1159–1162

    Google Scholar 

  59. Ninglin Z, xiaoxian X, yanru W (2002) Study on mechanical property of exfoliated silicone rubber/clay nanocomposites. Acta Polym Sin 1(2):253–256

    Google Scholar 

  60. Jung SY, Kim BK (2009) Preparation and characteristics of high voltage liquid silicone rubber by modified cross-linking agent. Trans Electr Electron Mater 10(1):9–15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhas C. Shit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shit, S.C., Shah, P. A Review on Silicone Rubber. Natl. Acad. Sci. Lett. 36, 355–365 (2013). https://doi.org/10.1007/s40009-013-0150-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40009-013-0150-2

Keywords

Navigation