Skip to main content
Log in

A comparative study of 1D nonlocal integral Timoshenko beam and 2D nonlocal integral elasticity theories for bending of nanoscale beams

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this paper, the bending behavior of nanoscale beams is studied using the 1D nonlocal integral Timoshenko beam theory (NITBT) and the 2D nonlocal integral elasticity theory (2D-NIET) using two types of nonlocal kernels, i.e., the two-phase kernel and a modified kernel which compensates the boundary effects. The governing equations are solved using the finite element method and the COMSOL code. Mesh sensitivity study and numerical verifications are presented. The main differences and similarities in both theories at the nanoscale are revealed. For both theories and both kernels, a softening behavior is found by increasing the nonlocal parameter and decreasing the phase parameter, for different boundary and load conditions. In contrast to the differential theory, no paradoxical behavior for the cantilever conditions is found for both theories. The sensitivity of the 2D-NIET to the nonlocal parameter is found higher than that of the NITBT. The normalized transverse deflection for the 2D-NIET is found independent of the boundary and load conditions. Also, the normalized transverse deflection varies linearly versus the normalized nonlocal parameter for both theories with the two-phase kernel and any condition except for the simply supported beam under distributed load condition in the NITBT. The boundary effect, resulting in a different softening near the boundaries, reduces by increasing the phase parameter. The modified kernel in the 2D-NIET is found sensitive to the pinned not to the free and fixed boundaries. It is in detail shown that for the 2D-NIET especially with the modified kernel, by increasing the nonlocal parameter, the deflection increases with almost the same ratio through the entire length of the beam and for all the boundary conditions. The obtained results can be used for modeling of various beam problems with nonlocal effects at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Bažant, Z.P., Jirásek, M.: Nonlocal integral formulations of plasticity and damage: Survey of progress. J. Eng. Mech. 128, 1119–1149 (2002). https://doi.org/10.1061/ASCE0733-93992002128:111119

    Article  Google Scholar 

  2. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–24 (1968). https://doi.org/10.1016/0020-7683(68)90036-X

    Article  MATH  Google Scholar 

  3. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–508 (2003). https://doi.org/10.1016/S0022-5096(03)00053-X

    Article  ADS  MATH  Google Scholar 

  4. Alibert, J.J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8, 51–73 (2003). https://doi.org/10.1177/1081286503008001658

    Article  MathSciNet  MATH  Google Scholar 

  5. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–90 (2011). https://doi.org/10.1016/j.ijsolstr.2011.03.006

    Article  Google Scholar 

  6. dell’Isola, F., Steigmann, D.: A Two-Dimensional Gradient-Elasticity Theory for Woven Fabrics. J. Elast. 118, 113–125 (2015). https://doi.org/10.1007/s10659-014-9478-1

    Article  MathSciNet  MATH  Google Scholar 

  7. Giorgio, I., Grygoruk, R., dell’Isola, F., Steigmann, D.J.: Pattern formation in the three-dimensional deformations of fibered sheets. Mech. Res. Commun. 69, 164–171 (2015). https://doi.org/10.1016/j.mechrescom.2015.08.005

    Article  Google Scholar 

  8. Andreaus, U., dell’Isola, F., Giorgio, I., Placidi, L., Lekszycki, T., Rizzi, N.L.: Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int. J. Eng. Sci. 108, 34–50 (2016). https://doi.org/10.1016/j.ijengsci.2016.08.00

    Article  MathSciNet  MATH  Google Scholar 

  9. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962). https://doi.org/10.1007/BF00253945

    Article  MathSciNet  MATH  Google Scholar 

  10. Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48, 2496–510 (2011). https://doi.org/10.1016/j.ijsolstr.2011.05.002

    Article  Google Scholar 

  11. Misra, A., Poorsolhjouy, P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Contin. Mech. Thermodyn. 28, 215–34 (2016). https://doi.org/10.1007/s00161-015-0420-y

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Grekova, E.F., Porubov, A.V., dell’Isola, F.: Reduced linear constrained elastic and viscoelastic homogeneous cosserat media as acoustic metamaterials. Symmetry (Basel) 12, 521 (2020). https://doi.org/10.3390/SYM12040521

    Article  ADS  Google Scholar 

  13. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–48 (1972). https://doi.org/10.1016/0020-7225(72)90039-0

    Article  MathSciNet  MATH  Google Scholar 

  14. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–35 (1972). https://doi.org/10.1016/0020-7225(72)90050-X

    Article  MATH  Google Scholar 

  15. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20, 887–928 (2015). https://doi.org/10.1177/1081286513509811

    Article  MathSciNet  MATH  Google Scholar 

  16. dell’Isola, F., Della Corte, A., Esposito, R., Russo, L.: Some cases of unrecognized transmission of scientific knowledge: From antiquity to gabrio piola’s peridynamics and generalized continuum theories. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials, vol. 42, pp. 77–128. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31721-2_5

    Chapter  Google Scholar 

  17. Levitas, V.I., Javanbakht, M.: Advanced phase-field approach to dislocation evolution. Phys. Rev. B. 86, 140101 (2012). https://doi.org/10.1103/PhysRevB.86.140101

    Article  ADS  Google Scholar 

  18. Levitas, V.I., Javanbakht, M.: Phase field approach to interaction of phase transformation and dislocation evolution. Appl. Phys. Lett. 102, 251904 (2013). https://doi.org/10.1063/1.4812488

    Article  ADS  Google Scholar 

  19. Javanbakht, M., Levitas, V..I.: Interaction between phase transformations and dislocations at the nanoscale. Part 2: Phase field simulation examples. J. Mech. Phys. Solids. 82, 164–185 (2015). https://doi.org/10.1016/j.jmps.2015.05.006

    Article  MathSciNet  ADS  Google Scholar 

  20. Levitas, V.I., Javanbakht, M.: Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms. Nanoscale. 6, 162–166 (2014). https://doi.org/10.1039/C3NR05044K

    Article  ADS  Google Scholar 

  21. Javanbakht, M., Levitas, V.I.: Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear. Phys. Rev. B. 94, 214104 (2016). https://doi.org/10.1103/PhysRevB.94.214104

    Article  ADS  Google Scholar 

  22. Javanbakht, M.., Adaei, M..: Formation of stress- and thermal-induced martensitic nanostructures in a single crystal with phase-dependent elastic properties. J. Mater. Sci. 5, 2544–2563 (2020)

    Article  ADS  Google Scholar 

  23. Mirzakhani, S., Javanbakht, M.: Phase field-elasticity analysis of austenite-martensite phase transformation at the nanoscale: Finite element modeling. Comput. Mater. Sci. 154, 41–52 (2018). https://doi.org/10.1016/j.commatsci.2018.07.034

    Article  Google Scholar 

  24. Levitas, V.I., Jafarzadeh, H., Farrahi, G.H., Javanbakht, M.: Thermodynamically consistent and scale-dependent phase field approach for crack propagation allowing for surface stresses. Int. J. Plast. 111, 1–35 (2018). https://doi.org/10.1016/j.ijplas.2018.07.005

    Article  Google Scholar 

  25. Jafarzadeh, H., Levitas, V.I., Farrahi, G.H., Javanbakht, M.: Phase field approach for nanoscale interactions between crack propagation and phase transformation. Nanoscale. 11, 22243–22247 (2019). https://doi.org/10.1039/C9NR05960A

    Article  Google Scholar 

  26. Javanbakht, M., Ghaedi, M.S.: Thermal induced nanovoid evolution in the vicinity of an immobile austenite-martensite interface. Comput. Mater. Sci. 172, 109339 (2020). https://doi.org/10.1016/j.commatsci.2019.109339

    Article  Google Scholar 

  27. Javanbakht, M., Ghaedi, M.S.: Phase field approach for void dynamics with interface stresses at the nanoscale. Int. J. Eng. Sci. 154, 103279 (2020). https://doi.org/10.1016/j.ijengsci.2020.103279

    Article  MathSciNet  MATH  Google Scholar 

  28. Javanbakht, M., Ghaedi, M.S.: Nanovoid induced martensitic growth under uniaxial stress: Effect of misfit strain, temperature and nanovoid size on PT threshold stress and nanostructure in NiAl. Comp. Mater. Sci. 184, 109928 (2020). https://doi.org/10.1016/j.commatsci.2020.109928

    Article  Google Scholar 

  29. Javanbakht, M. Ghaedi, M. S. Barchiesi, E. Ciallella, A.: The effect of a pre-existing nanovoid on martensite formation and interface propagation: a phase field study. Math. Mech. Solids. (2020). https://doi.org/10.1177%2F1081286520948118

  30. Javanbakht M, Ghaedi M.S.: Nanovoid induced multivariant martensitic growth under negative pressure: Effect of misfit strain and temperature on PT threshold stress and phase evolution. Mech Mater 103627 (2020). https://doi.org/10.1016/j.mechmat.2020.103627

  31. O’Grady, J., Foster, J.: Peridynamic beams: A non-ordinary, state-based model. Int. J. Solids Struct. 51, 3177–83 (2014). https://doi.org/10.1016/j.ijsolstr.2014.05.014

    Article  Google Scholar 

  32. Moyer, E., Miraglia, M.: Peridynamic solutions for Timoshenko beams. Engineering 6, 304–317 (2014). https://doi.org/10.4236/eng.2014.66034

    Article  Google Scholar 

  33. Diyaroglu, C., Oterkus, E., Oterkus, S., Madenci, E.: Peridynamics for bending of beams and plates with transverse shear deformation. Int. J. Solids Struct. 69–70, 152–68 (2015). https://doi.org/10.1016/j.ijsolstr.2015.04.040

    Article  Google Scholar 

  34. Diyaroglu, C., Oterkus, E., Oterkus, S.: An Euler-Bernoulli beam formulation in an ordinary state-based peridynamic framework. Math. Mech. Solids 24, 361–76 (2017). https://doi.org/10.1177/1081286517728424

    Article  MathSciNet  MATH  Google Scholar 

  35. Nguyen, C.T., Oterkus, S.: Peridynamics formulation for beam structures to predict damage in offshore structures. Ocean Eng. 173, 244–67 (2019). https://doi.org/10.1016/j.oceaneng.2018.12.047

    Article  Google Scholar 

  36. Yang, Z., Oterkus, E., Nguyen, C.T., Oterkus, S.: Implementation of peridynamic beam and plate formulations in finite element framework. Contin. Mech. Thermodyn. 31, 301–15 (2019). https://doi.org/10.1007/s00161-018-0684-0

    Article  MathSciNet  ADS  Google Scholar 

  37. Jafari, A., Ezzati, M., Atai, A.A.: Static and free vibration analysis of Timoshenko beam based on combined peridynamic-classical theory besides FEM formulation. Comput. Struct. 213, 72–81 (2019). https://doi.org/10.1016/j.compstruc.2018.11.007

    Article  Google Scholar 

  38. Yang, Z., Oterkus, E., Oterkus, S.: Peridynamic Higher-Order Beam Formulation. J. Peridynamics. Nonlocal Model (2020). https://doi.org/10.1007/s42102-020-00043-w

    Article  MATH  Google Scholar 

  39. Liu, S., Fang, G., Liang, J., Fu, M., Wang, B., Yan, X.: Study of three-dimensional Euler-Bernoulli beam structures using element-based peridynamic model. Eur. J. Mech. - A/Solids 86, 104186 (2021). https://doi.org/10.1016/j.euromechsol.2020.104186

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Kröner, E.: Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3, 731–42 (1967). https://doi.org/10.1016/0020-7683(67)90049-2

    Article  MATH  Google Scholar 

  41. Kunin, I.A.: On foundations of the theory of elastic media with microstructure. Int. J. Eng. Sci. 22, 969–78 (1984). https://doi.org/10.1016/0020-7225(84)90098-3

    Article  MATH  Google Scholar 

  42. Krumhansl, J.A.: Some considerations of the relation between solid state physics and generalized continuum mechanics. In: Kröner, E. (ed.) Mechanics of Generalized Continua, pp. 298–311. Springer, Berlin, Heidelberg (1968). https://doi.org/10.1007/978-3-662-30257-6_37

    Chapter  Google Scholar 

  43. dell’Isola F, Andreaus U, Cazzani A, Perego U, Placidi L, et al.: On a debated principle of Lagrange analytical mechanics and on its multiple applications. The complete works of Gabrio Piola: Volume I, vol. 38, Advanced Structured Materials. https://hal.archives-ouvertes.fr/hal-00991089 (2014)

  44. Edelen, D.G.B., Laws, N.: On the thermodynamics of systems with nonlocality. Arch. Ration Mech. Anal. 43, 24–35 (1971). https://doi.org/10.1007/BF00251543

    Article  MathSciNet  MATH  Google Scholar 

  45. Eringen, A.C., Kim, B.S.: Stress concentration at the tip of crack. Mech. Res. Commun. 1, 233–7 (1974). https://doi.org/10.1016/0093-6413(74)90070-6

    Article  Google Scholar 

  46. Eringen, A.C., Speziale, C.G., Kim, B.S.: Crack-tip problem in non-local elasticity. J. Mech. Phys. Solids 25, 339–55 (1977). https://doi.org/10.1016/0022-5096(77)90002-3

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Eringen, A.C.: Line crack subject to shear. Int. J. Fract. 14, 367–79 (1978). https://doi.org/10.1007/BF00015990

    Article  MathSciNet  Google Scholar 

  48. Eringen, A.C.: Line crack subject to antiplane shear. Eng. Fract. Mech. 12, 211–9 (1979). https://doi.org/10.1016/0013-7944(79)90114-0

    Article  Google Scholar 

  49. Eringen, A.C.: Theory of Nonlocal Elasticity and Some Applications. Princeton University, NJ Dept of Civil Engineering, New Jersey (1984)

    Book  Google Scholar 

  50. Altan, S.B.: Uniqueness of initial-boundary value problems in nonlocal elasticity. Int. J. Solids Struct. 25, 1271–8 (1989). https://doi.org/10.1016/0020-7683(89)90091-7

    Article  MathSciNet  MATH  Google Scholar 

  51. Rogula, D.: Introduction to nonlocal theory of material media. In: Rogula, D. (ed.) Nonlocal Theory of Material Media, pp. 123–222. Springer, Vienna (1982). https://doi.org/10.1007/978-3-7091-2890-9_3

    Chapter  MATH  Google Scholar 

  52. Altan, S.B.: Existence in nonlocal elasticity. Arch. Mech. 41, 25–36 (1989)

    MathSciNet  MATH  Google Scholar 

  53. Altan, B.S.: Uniqueness in nonlocal thermoelasticity. J. Therm. Stress 14, 121–8 (1991). https://doi.org/10.1080/01495739108927056

    Article  MathSciNet  Google Scholar 

  54. Wang, J., Dhaliwal, R.S.: Uniqueness theorem in nonlocal thermoelasticity. J. Therm. Stress 17, 97–100 (1994). https://doi.org/10.1080/01495739408946248

    Article  MathSciNet  Google Scholar 

  55. Evgrafov, A., Bellido, J.C.: From non-local Eringen’s model to fractional elasticity. Math. Mech. Solids 24, 1935–53 (2019). https://doi.org/10.1177/1081286518810745

    Article  MathSciNet  MATH  Google Scholar 

  56. Polizzotto, C.: Nonlocal elasticity and related variational principles. Int. J. Solids Struct. 38, 7359–80 (2001). https://doi.org/10.1016/S0020-7683(01)00039-7

    Article  MathSciNet  MATH  Google Scholar 

  57. Polizzotto, C., Fuschi, P., Pisano, A.A.: A strain-difference-based nonlocal elasticity model. Int. J. Solids Struct. 41, 2383–401 (2004). https://doi.org/10.1016/j.ijsolstr.2003.12.013

    Article  MATH  Google Scholar 

  58. Fuschi, P., Pisano, A.A., Polizzotto, C.: Size effects of small-scale beams in bending addressed with a strain-difference based nonlocal elasticity theory. Int. J. Mech. Sci. 151, 661–71 (2019). https://doi.org/10.1016/j.ijmecsci.2018.12.024

    Article  Google Scholar 

  59. Polizzotto, C., Fuschi, P., Pisano, A.A.: A nonhomogeneous nonlocal elasticity model. Eur. J. Mech. A/Solids 25, 308–33 (2006). https://doi.org/10.1016/j.euromechsol.2005.09.007

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703 (1983). https://doi.org/10.1063/1.332803

    Article  ADS  Google Scholar 

  61. Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007). https://doi.org/10.1016/j.ijengsci.2007.04.004

    Article  MATH  Google Scholar 

  62. Niknam, H., Aghdam, M.M.: A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation. Compos. Struct. 119, 452–62 (2015). https://doi.org/10.1016/j.compstruct.2014.09.023

    Article  Google Scholar 

  63. Aghdam, M.. M., Niknam, H.: Nonlinear forced vibration of nanobeams. In: Jazar, R., Dai, L. (eds.) Nonlinear Approaches in Engineering Applications, pp. 243–262. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-27055-5_7

    Chapter  Google Scholar 

  64. Aydogdu, M.: A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration. Phys E: Low-Dimens. Syst, Nanostructures 41, 1651–5 (2009). https://doi.org/10.1016/j.physe.2009.05.014

    Article  ADS  Google Scholar 

  65. Fan, C., Zhao, M., Zhu, Y., Liu, H., Zhang, T.-Y.: Analysis of micro/nanobridge test based on nonlocal elasticity. Int. J. Solids Struct. 49, 2168–76 (2012). https://doi.org/10.1016/j.ijsolstr.2012.04.028

    Article  Google Scholar 

  66. Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–12 (2003). https://doi.org/10.1016/S0020-7225(02)00210-0

    Article  Google Scholar 

  67. Challamel, N., Wang, C.M.: The small length scale effect for a non-local cantilever beam: A paradox solved. Nanotechnology 19(34), 345703 (2008). https://doi.org/10.1088/0957-4484/19/34/345703

    Article  Google Scholar 

  68. Khodabakhshi, P., Reddy, J.N.: A unified integro-differential nonlocal model. Int. J. Eng. Sci. 95, 60–75 (2015). https://doi.org/10.1016/j.ijengsci.2015.06.006

    Article  MathSciNet  MATH  Google Scholar 

  69. Fernández-Sáez, J., Zaera, R., Loya, J.A., Reddy, J.N.: Bending of Euler-Bernoulli beams using Eringen’s integral formulation: A paradox resolved. Int. J. Eng. Sci. 99, 107–16 (2016). https://doi.org/10.1016/j.ijengsci.2015.10.013

    Article  MathSciNet  MATH  Google Scholar 

  70. Tuna, M., Kirca, M.: Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams. Int. J. Eng. Sci. 105, 80–92 (2016). https://doi.org/10.1016/j.ijengsci.2016.05.001

    Article  MathSciNet  MATH  Google Scholar 

  71. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015). https://doi.org/10.1016/j.jmps.2015.02.001

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. Sahmani, S., Aghdam, M.M., Rabczuk, T.: Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Compos. Struct. 186, 68–78 (2018). https://doi.org/10.1016/j.compstruct.2017.11.082

    Article  Google Scholar 

  73. Sahmani, S., Aghdam, M.M.: Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams. Compos. Struct. 179, 77–88 (2017). https://doi.org/10.1016/j.compstruct.2017.07.064

    Article  Google Scholar 

  74. Malikan, M., Eremeyev, V.A.: On the Dynamics of a Visco–Piezo–Flexoelectric Nanobeam. Symmetry 12(4), 643 (2020). https://doi.org/10.3390/sym12040643

    Article  ADS  Google Scholar 

  75. Malikan, M., Eremeyev, V.A.: On nonlinear bending study of a Piezo–Flexomagnetic Nanobeam Based on an analytical-numerical solution. Nanomaterials 10(9), 1762 (2020). https://doi.org/10.3390/nano10091762

    Article  Google Scholar 

  76. Borino, G., Failla, B., Parrinello, F.: A symmetric nonlocal damage theory. Int. J. Solids Struct. 40, 3621–45 (2003). https://doi.org/10.1016/S0020-7683(03)00144-6

    Article  MATH  Google Scholar 

  77. Koutsoumaris, C.C., Eptaimeros, K.G., Tsamasphyros, G.J.: A different approach to Eringen’s nonlocal integral stress model with applications for beams. Int. J. Solids Struct. 112, 222–38 (2017). https://doi.org/10.1016/j.ijsolstr.2016.09.007

    Article  Google Scholar 

  78. Jirásek, M.: Nonlocal models for damage and fracture: Comparison of approaches. Int. J. Solids Struct. 35, 4133–45 (1998). https://doi.org/10.1016/S0020-7683(97)00306-5

    Article  MathSciNet  MATH  Google Scholar 

  79. Ranjbar, M., Mashayekhi, M., Parvizian, J., Düster, A., Rank, E.: Finite Cell Method implementation and validation of a nonlocal integral damage model. Int. J. Mech. Sci. 128–129, 401–13 (2017). https://doi.org/10.1016/j.ijmecsci.2017.05.008

    Article  Google Scholar 

  80. Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Z. Angew Math. Und Phys. 69, 56 (2018). https://doi.org/10.1007/s00033-018-0947-4

    Article  MathSciNet  MATH  Google Scholar 

  81. Pisano, A.A., Fuschi, P.: Closed form solution for a nonlocal elastic bar in tension. Int. J. Solids Struct. 40, 13–23 (2003). https://doi.org/10.1016/S0020-7683(02)00547-4

    Article  MathSciNet  MATH  Google Scholar 

  82. Benvenuti, E., Simone, A.: One-dimensional nonlocal and gradient elasticity: Closed-form solution and size effect. Mech. Res. Commun. 48, 46–51 (2013). https://doi.org/10.1016/j.mechrescom.2012.12.001

    Article  Google Scholar 

  83. Yan, J.W., Tong, L.H., Li, C., Zhu, Y., Wang, Z.W.: Exact solutions of bending deflections for nano-beams and nano-plates based on nonlocal elasticity theory. Compos. Struct. 125, 304–13 (2015). https://doi.org/10.1016/j.compstruct.2015.02.017

    Article  Google Scholar 

  84. Pisano, A.A., Sofi, A., Fuschi, P.: Nonlocal integral elasticity: 2D finite element based solutions. Int. J. Solids Struct. 46, 3836–49 (2009). https://doi.org/10.1016/j.ijsolstr.2009.07.009

    Article  MATH  Google Scholar 

  85. Pisano, A.A., Sofi, A., Fuschi, P.: Finite element solutions for nonhomogeneous nonlocal elastic problems. Mech. Res. Commun. 36, 755–61 (2009). https://doi.org/10.1016/j.mechrescom.2009.06.003

    Article  MATH  Google Scholar 

  86. Fuschi, P., Pisano, A.A., De Domenico, D.: Plane stress problems in nonlocal elasticity: Finite element solutions with a strain-difference-based formulation. J. Math. Anal. Appl. 431, 714–36 (2015). https://doi.org/10.1016/j.jmaa.2015.06.005

    Article  MathSciNet  MATH  Google Scholar 

  87. Phadikar, J.K., Pradhan, S.C.: Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput. Mater. Sci. 49, 492–9 (2010). https://doi.org/10.1016/j.commatsci.2010.05.040

    Article  Google Scholar 

  88. Tuna, M., Kirca, M.: Bending, buckling and free vibration analysis of Euler-Bernoulli nanobeams using Eringen’s nonlocal integral model via finite element method. Compos. Struct. 179, 269–84 (2017). https://doi.org/10.1016/j.compstruct.2017.07.019

    Article  Google Scholar 

  89. Marotti de Sciarra, F.: Variational formulations and a consistent finite-element procedure for a class of nonlocal elastic continua. Int. J. Solids. Struct. 45, 4184–4202 (2008)

    Article  MATH  Google Scholar 

  90. Abdollahi, R., Boroomand, B.: Benchmarks in nonlocal elasticity defined by Eringen’s integral model. Int. J. Solids Struct. 50, 2758–2771 (2013). https://doi.org/10.1016/j.ijsolstr.2013.04.027

    Article  Google Scholar 

  91. Romano, G., Barretta, R., Diaco, M., Marotti de Sciarra, F.: Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int. J. Mech. Sci. 121, 151–156 (2017). https://doi.org/10.1016/j.ijmecsci.2016.10.036

    Article  Google Scholar 

  92. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids 21, 562–77 (2014). https://doi.org/10.1177/1081286514531265

    Article  MathSciNet  MATH  Google Scholar 

  93. Cuomo, M., dell’Isola, F., Greco, L.: Simplified analysis of a generalized bias test for fabrics with two families of inextensible fibres. Z. Angew. Math. Und Phys. 67, 61 (2016). https://doi.org/10.1007/s00033-016-0653-z

    Article  MathSciNet  MATH  Google Scholar 

  94. Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: Numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017). https://doi.org/10.1016/j.mechrescom.2017.05.005

    Article  Google Scholar 

  95. Andreaus, U., Spagnuolo, M., Lekszycki, T., Eugster, S.R.: A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams. Contin. Mech. Thermodyn. 30, 1103–23 (2018). https://doi.org/10.1007/s00161-018-0665-3

    Article  MathSciNet  ADS  MATH  Google Scholar 

  96. Spagnuolo, M., Andreaus, U.: A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and post-buckling. Math. Mech. Solids 24, 258–80 (2018). https://doi.org/10.1177/1081286517737000

    Article  MathSciNet  MATH  Google Scholar 

  97. dell’Isola, F., Turco, E., Misra, A., Vangelatos, Z., Grigoropoulos, C., Melissinaki, V., et al.: Force-displacement relationship in micro-metric pantographs: Experiments and numerical simulations. Comptes. Rendus. Mécanique 347, 397–405 (2019). https://doi.org/10.1016/j.crme.2019.03.015

    Article  ADS  Google Scholar 

  98. Eugster, S., dell’isola, F., Steigmann, D.: Continuum theory for mechanical meta-materials with a cubic lattice substructure. Math. Mech. Complex Syst. 7, 75–98 (2019). https://doi.org/10.2140/memocs.2019.7.75

    Article  MathSciNet  MATH  Google Scholar 

  99. Desmorat, B., Spagnuolo, M., Turco, E.: Stiffness optimization in nonlinear pantographic structures. Math. Mech. Solids 25, 2252–62 (2020). https://doi.org/10.1177/1081286520935503

    Article  MathSciNet  MATH  Google Scholar 

  100. Spagnuolo, M., Yildizdag, M.E., Andreaus, U., Cazzani, A.M.: Are higher-gradient models also capable of predicting mechanical behavior in the case of wide-knit pantographic structures? Math. Mech. Solids 26, 18–29 (2020). https://doi.org/10.1177/1081286520937339

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The support of Isfahan University of Technology and Iran National Science Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Javanbakht.

Additional information

Communicated by Marcus Aßmus and Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danesh, H., Javanbakht, M. & Mohammadi Aghdam, M. A comparative study of 1D nonlocal integral Timoshenko beam and 2D nonlocal integral elasticity theories for bending of nanoscale beams. Continuum Mech. Thermodyn. 35, 1063–1085 (2023). https://doi.org/10.1007/s00161-021-00976-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-00976-7

Keywords

Navigation