Skip to main content

Advertisement

Log in

A mechano-biological model of multi-tissue evolution in bone

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Successfully simulating tissue evolution in bone is of significant importance in predicting various biological processes such as bone remodeling, fracture healing and osseointegration of implants. Each of these processes involves in different ways the permanent or transient formation of different tissue types, namely bone, cartilage and fibrous tissues. The tissue evolution in specific circumstances such as bone remodeling and fracturing healing is currently able to be modeled. Nevertheless, it remains challenging to predict which tissue types and organization can develop without any a priori assumptions. In particular, the role of mechano-biological coupling in this selective tissue evolution has not been clearly elucidated. In this work, a multi-tissue model has been created which simultaneously describes the evolution of bone, cartilage and fibrous tissues. The coupling of the biological and mechanical factors involved in tissue formation has been modeled by defining two different tissue states: an immature state corresponding to the early stages of tissue growth and representing cell clusters in a weakly neo-formed Extra Cellular Matrix (ECM), and a mature state corresponding to well-formed connective tissues. This has allowed for the cellular processes of migration, proliferation and apoptosis to be described simultaneously with the changing ECM properties through strain driven diffusion, growth, maturation and resorption terms. A series of finite element simulations were carried out on idealized cantilever bending geometries. Starting from a tissue composition replicating a mid-diaphysis section of a long bone, a steady-state tissue formation was reached over a statically loaded period of 10,000 h (60 weeks). The results demonstrated that bone formation occurred in regions which are optimally physiologically strained. In two additional 1000 h bending simulations both cartilaginous and fibrous tissues were shown to form under specific geometrical and loading cases and cartilage was shown to lead to the formation of bone in a beam replicating a fracture healing initial tissue distribution. This finding is encouraging in that it is corroborated by similar experimental observations of cartilage leading bone formation during the fracture healing process. The results of this work demonstrate that a multi-tissue mechano-biological model of tissue evolution has the potential for predictive analysis in the design and implementations of implants, describing fracture healing and bone remodeling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\varphi _\mathrm{TOT} \) :

Total volume fraction

\(\varphi _{i,\mathrm{TOT}} \) :

Total volume fraction of bone, cartilage and fibrous tissues, where \(i=B,C or F\)

\(\varphi _V \) :

Total volume fraction of free space

\(\varphi _i^I \) :

Volume fraction of immature bone, cartilage and fibrous tissues, where \(i=B,C or F\)

\(\varphi _i^M \) :

Volume fraction of mature bone, cartilage and fibrous tissues, where \(i=B,C or F\)

\(\varepsilon _I \) :

First principal strain

\(\varepsilon _{II} \) :

Second principal strain

\(\varepsilon _Y \) :

Yield strain

\(\varepsilon _{k,N} \) :

Normalized principal strain where \(k=I or II\).

\(f_{i,k} \left( {\varepsilon _{k,N} } \right) \) :

Function relating the normalized principal strain with the rate of change of the activation time \(t_{\mathrm{act},i}\), where \(i=B, C or F\) and \(k=I or II\).

\(a_{i,k}^\varepsilon ,b_{i,k}^\varepsilon \) :

and k\(c_{i,k}^\varepsilon \) Characteristic coefficients which define \(f_{i,k} \left( {\varepsilon _{k,N} } \right) \) where \(i=B, C or F\) and \(k=I or II\).

\(t_{\mathrm{act},i} \) :

Activation time for each tissue, where \(i=B,C or F\)

\(t_\mathrm{act}^\mathrm{Bound} \) :

Gaussian distribution used to limit the growth of the activation time

e.:

Euler‘s number

\(p^\mathrm{Bound}, q^\mathrm{Bound}\) and \(r^\mathrm{Bound}\) :

Coefficients used to define \(t_\mathrm{act}^\mathrm{Bound}\)

t :

time

D :

Diffusion tensor

\(\Delta \) :

Laplacian

I :

Identity matrix

\(\lambda _i \) and \(\varPhi _i \) :

Diffusion rate coefficients, where \(i=B, C or F\)

\(\alpha _i\) :

Immature tissue growth rate, where \(i=B,C or F\)

\(\beta _i\) :

Tissue resorption rate, where \(i=B,C or F\)

\(\gamma _i \) :

Tissue maturation rate, where \(i=B,C or F\)

\(T_i^G\) :

Immature tissue growth function

\(T_i^R\) :

Tissue resorption function

\(T_i^M \) :

Immature to mature tissue maturation function

\(\theta _I\;\hbox {and}\;\theta _{II} \) :

Direction of the principal stresses

\(\otimes \) :

Tensor product

\(T_i\) :

Effective range of \(t_{\mathrm{act},i} \), where \(i=B,C or F\).

\(T_i^\mathrm{Min}\) and \(T_i^\mathrm{Max} \) :

The maximum and minimum values of \(T_i ,\) where \(i=B,C or F\).

\(T_{i,\mathrm{GT}}\) :

Coefficient used to scale \(T_{i}^G\) where \(i=B,C or F\)

\(k_i^R , \quad l_i^R \) and \( m_i^R \) :

Coefficient used to define \(T_{i}^R\) where \(i=B,C or F\)

\( d_i^M ,\) \(e_i^M \) and \(f_i^M \) :

Coefficient used to define \(T_{i}^M\) where \(i=B,C or F\)

\(E_\mathrm{TOT} \) :

Material Young’s modulus

\(E_i^I\) :

Young’s modulus of immature tissues, where \(i=B,C or F\)

\(E_i^M\) :

Young’s modulus of mature tissues, where \(i=B,C or F\)

\(E_V \) :

Young’s modulus of the free space

References

  1. Akkus, O., Polyakova-Akkus, A., Adar, F., Schaffler, M.B.: Aging of microstructural compartments in human compact bone. J Bone Miner. Res. 18(6), 1012–1019 (2003). https://doi.org/10.1359/jbmr.2003.18.6.1012

    Article  Google Scholar 

  2. Avval, P.T., Bougherara, H.: Predicting bone remodeling in response to total hip arthroplasty?: Computational study using mechanobiochemical model. J. Biomech. Eng. 136(5), 1–12 (2017). https://doi.org/10.1115/1.4026642

    Article  Google Scholar 

  3. Bala, Y., Depalle, B., Douillard, T., Meille, S., Clément, P., Follet, H., Boivin, G.: Respective roles of organic and mineral components of human cortical bone matrix in micromechanical behavior: an instrumented indentation study. J. Mech. Behav. Biomed. Mater. 4(7), 1473–82 (2011). https://doi.org/10.1016/j.jmbbm.2011.05.017

    Article  Google Scholar 

  4. Bala, Y., Farlay, D., Delmas, P.D., Meunier, P.J., Boivin, G.: Time sequence of secondary mineralization and microhardness in cortical and cancellous bone from ewes. Bone 46(4), 1204–1212 (2010). https://doi.org/10.1016/j.bone.2009.11.032

    Article  Google Scholar 

  5. Bandeiras, C., Completo, A.: A mathematical model of tissue-engineered cartilage development under cyclic compressive loading. Biomech. Model. Mechanobiol. 16(2), 1–16 (2016). https://doi.org/10.1007/s10237-016-0843-9

    Article  Google Scholar 

  6. Bayraktar, H.H., Morgan, E.F., Niebur, G.L., Morris, G.E., Wong, E.K., Keaveny, T.M.: Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue 37, 27–35 (2004). https://doi.org/10.1016/S0021-9290(03)00257-4

  7. Beaupré, G.S., Orr, T.E., Carter, D.R.: An approach for time-dependent bone modeling and remodeling—application: a preliminary remodeling simulation. J. Orthop. Res. 8(5), 662–670 (1990)

    Article  Google Scholar 

  8. Bousson, V., Meunier, A., Bergot, C., Vicaut, E., Rocha, M.A., Morais, M.H., Laredo, J.D.: Distribution of intracortical porosity in human midfemoral cortex by age and gender. J. Bone Miner. Res. 16(7), 1308–1317 (2001). https://doi.org/10.1359/jbmr.2001.16.7.1308

    Article  Google Scholar 

  9. Burr, D.B., Martin, R.B.: Errors in bone remodeling: toward a unified theory of metabolic bone disease. Am. J. Anat. 186(2), 186–216 (1989). https://doi.org/10.1002/aja.1001860208

    Article  Google Scholar 

  10. Burstein, A. H., Zika, J. M., Heiple, K. G., & Klein, L.: (1975) Contribution of collagen and mineral to the elastic-plastic properties of bone. Journal of JBone and Joint Surgery

  11. Byrne, D.P., Lacroix, D., Prendergast, P.J.: Simulation of fracture healing in the tibia: Mechanoregulation of cell activity using a lattice modeling approach. J. Orthop. Res. 29(10), 1496–1503 (2011). https://doi.org/10.1002/jor.21362

    Article  Google Scholar 

  12. Cardoso, L., Herman, B.C., Verborgt, O., Laudier, D., Majeska, R.J., Schaffler, M.B.: Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J. Bone Miner. Res. 24(4), 597–605 (2009). https://doi.org/10.1359/jbmr.081210

    Article  Google Scholar 

  13. Carter, D.R., Beaupré, G.S., Giori, N.J., Helms, J.A.: Mechanobiology of skeletal regeneration. Clin. Orthop. Relat. Res. 355, 41–55 (1998)

    Article  Google Scholar 

  14. Carter, D.R., Blenman, P.R., Beaupre, G.S.: Correlations between mechanical-stress history and tissue differentiation in initial fracture-healing. J. Orthop. Res. 6(5), 736–748 (1988)

    Article  Google Scholar 

  15. Carter, D.R., Wong, M.: Modelling cartilage mechanobiology. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358(1437), 1461–1471 (2003). https://doi.org/10.1098/rstb.2003.1346

    Article  Google Scholar 

  16. Checa, S., Prendergast, P.J., Duda, G.N.: Inter-species investigation of the mechano-regulation of bone healing: comparison of secondary bone healing in sheep and rat. J. Biomech. 44(7), 1237–1245 (2011). https://doi.org/10.1016/j.jbiomech.2011.02.074

    Article  Google Scholar 

  17. Chen, J., Rungsiyakull, C., Li, W., Chen, Y., Swain, M., Li, Q.: Multiscale design of surface morphological gradient for osseointegration. J. Mech. Behav. Biomed. Mater. 20, 387–397 (2013). https://doi.org/10.1016/j.jmbbm.2012.08.019

    Article  Google Scholar 

  18. Christen, P., Ito, K., Ellouz, R., Boutroy, S., Sornay-Rendu, E., Chapurlat, R.D., van Rietbergen, B.: Bone remodelling in humans is load-driven but not lazy. Nat. Commun. 5, 4855 (2014). https://doi.org/10.1038/ncomms5855

    Article  ADS  Google Scholar 

  19. Claes, L., Augat, P., Suger, G., Wilke, H.J.: Influence of size and stability of the osteotomy gap on the success of fracture healing. J. Orthop. Res. 15(4), 577–584 (1997). https://doi.org/10.1002/jor.1100150414

    Article  Google Scholar 

  20. Claes, L., Heigele, C.A.: Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomech. 32(3), 255–266 (1999). https://doi.org/10.1016/S0021-9290(98)00153-5

    Article  Google Scholar 

  21. Currey, J.D.: The Mechanical Adaptations of Bones. Princeton University Press, Princeton (1984)

    Book  Google Scholar 

  22. Currey, J.D.: The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J. Biomech. 21(2), 131–139 (1988). https://doi.org/10.1016/0021-9290(88)90006-1

    Article  Google Scholar 

  23. Dabirrahmani, D., Hogg, M., Kohan, L., Gillies, M.: Primary and long-term stability of a short-stem hip implant. In: Proceedings of the Institution of Mechanical Engineers, vol. 224 no 9, (2010)

  24. Doblaré, M., García-Aznar, J.M.: On numerical modelling of growth, differentiation and damage in structural living tissues. Arch. Comput. Methods Eng. 13(4), 471–513 (2006). https://doi.org/10.1007/BF02905856

    Article  MathSciNet  MATH  Google Scholar 

  25. Doblaré, M., García, J.M.: Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement. J. Biomech. 34(9), 1157–1170 (2001). https://doi.org/10.1016/S0021-9290(01)00069-0

    Article  Google Scholar 

  26. Doblaré, M., García, J.M.: Anisotropic bone remodelling model based on a continuum damage-repair theory. J. Biomech. 35(1), 1–17 (2002). https://doi.org/10.1016/S0021-9290(01)00178-6

    Article  Google Scholar 

  27. Doblaré, M., Garcia, J.M., Gomez, M.J.: Modelling bone tissue fracture and healing: a review. Eng. Fract. Mech. 71(13–14), 1809–1840 (2004). https://doi.org/10.1016/j.engfracmech.2003.08.003

    Article  Google Scholar 

  28. Donaldson, C.L., Hulley, S.B., Vogel, J.M., Hattner, R.S., Bayers, J.H., Mcmillan, D.E.: Effect of prolonged bed rest on bone mineral. Metabolism 19(12), 1071–1084 (1970). https://doi.org/10.1016/0026-0495(70)90032-6

    Article  Google Scholar 

  29. Edwards, J., Schulze, E., Sabokbar, A., Gordon-Andrews, H., Jackson, D., Athanasou, N.A.: Absence of lymphatics at the bone-implant interface—implications for periprosthetic osteolysis. Acta Orthop. 79(2), 289–294 (2008). https://doi.org/10.1080/17453670710015175

    Article  Google Scholar 

  30. Freutel, M., Schmidt, H., Durselen, L., Ignatius, A., Galbusera, F.: Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin. Biomech. 29(4), 363–372 (2014). https://doi.org/10.1016/j.clinbiomech.2014.01.006

    Article  Google Scholar 

  31. Frost, H.M.: The Physiology of Cartilaginous Fibrous, and Bony Tissue. Charles C Thomas, Springfield (1972)

    Google Scholar 

  32. Frost, H.M.: Vital biomechanics: proposed general concepts for skeletal adaptations to mechanical usage. Calcif. Tissue Int. 42(3), 145–156 (1988). https://doi.org/10.1007/BF02556327

    Article  Google Scholar 

  33. Frost, H.M.: Perspectives: a proposed general model of the "mechanostat" (suggestions from a new skeletal-biologic paradigm). Anat. Rec. 244(2), 139–147 (1996). https://doi.org/10.1002/(SICI)1097-0185(199602)244:2%3c139::AID-AR1%3e3.0.CO;2-X

    Article  Google Scholar 

  34. Gao, J., Williams, J.L., Roan, E.: Multiscale modeling of growth plate cartilage mechanobiology. Biomech. Model. Mechanobiol (2016). https://doi.org/10.1007/s10237-016-0844-8

    Article  Google Scholar 

  35. García-Aznar, J.M., Kuiper, J.H., Gómez-Benito, M.J., Doblaré, M., Richardson, J.B.: Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth. J. Biomech. 40(7), 1467–1476 (2007). https://doi.org/10.1016/j.jbiomech.2006.06.013

    Article  Google Scholar 

  36. Garijo, N., Fernández, J.R., Pérez, M.A., García-aznar, J.M.: Numerical stability and convergence analysis of bone remodeling model. Comput. Methods Appl. Mech. Eng. 271, 253–268 (2014). https://doi.org/10.1016/j.cma.2013.12.014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Giorgio, I., Andreaus, U., dell’Isola, F., Lekszycki, T.: Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Extreme Mech. Lett. 13, 141–147 (2017). https://doi.org/10.1016/j.eml.2017.02.008

    Article  Google Scholar 

  38. Giorgio, I., Andreaus, U., Lekszycki, T., Della Corte, A.: The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with voids. Math. Mech. Solids 22(5), 969–987 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Giorgio, I., Andreaus, U., Scerrato, D., Braidotti, P.: Modeling of a non-local stimulus for bone remodeling process under cyclic load: application to a dental implant using a bioresorbable porous material. Math. Mech. Solids 22(9), 1790–1805 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Giorgio, I., Andreaus, U., Scerrato, D., dell’Isola, F.: A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech. Model. Mechanobiol. 15(5), 1325–1343 (2016). https://doi.org/10.1007/s10237-016-0765-6

    Article  Google Scholar 

  41. Gomez-Benito, M.J., Garcia-Aznar, J.M., Kuiper, J.H., Doblaré, M.: Influence of fracture gap size on the pattern of long bone healing: a computational study. J. Theor. Biol. 235(1), 105–119 (2005). https://doi.org/10.1016/j.jtbi.2004.12.023

    Article  MathSciNet  Google Scholar 

  42. Gundle, R., Joyner, C.J., Triffitt, J.T.: Human bone tissue formation in diffusion chamber culture in vivo by bone-derived cells and marrow stromal fibroblastic cells. Bone 16(6), 597–601 (1995). https://doi.org/10.1016/8756-3282(95)00112-Q

    Article  Google Scholar 

  43. Hansen, U., Zioupos, P., Simpson, R., Currey, J.D., Hynd, D.: The effect of strain rate on the mechanical properties of human cortical bone. J. Biomech. Eng. 130(1), 11–18 (2008). https://doi.org/10.1115/1.2838032

    Article  Google Scholar 

  44. Huiskes, R., Ruimerman, R., van Lenthe, G.H., Janssen, J.D.: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405(6787), 704–706 (2000). https://doi.org/10.1038/35015116

    Article  ADS  Google Scholar 

  45. Huiskes, R., Van Driel, W.D., Prendergast, P.J., Søballe, K.: A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation. J. Mater. Sci. Mater. Med. 8(12), 785–788 (1997). https://doi.org/10.1023/A:1018520914512

    Article  Google Scholar 

  46. Huiskes, R., Weinans, H., Grootenboer, H.J., Dalstra, M., Fudala, B., Slooff, T.J.: Adaptive bone-remodeling theory applied to prosthetic-design analysis. J. Biomech. 20(11–12), 1135–1150 (1987). https://doi.org/10.1016/0021-9290(87)90030-3

    Article  Google Scholar 

  47. Isaksson, H., van Donkelaar, C.C., Huiskes, R., Ito, K.: Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: comparison with in vivo results. Anticancer Res. 24(5), 898–907 (2006). https://doi.org/10.1002/jor

    Article  Google Scholar 

  48. Isaksson, H., Gröngröft, I., Wilson, W., Van Donkelaar, C.C., Ven Rietbergen, B., Tami, A., Ito, K.: Remodeling of fracture callus in mice is consistent with mechanical loading and bone remodeling theory. J. Orthop. Res. 27(5), 664–672 (2009). https://doi.org/10.1002/jor.20725

    Article  Google Scholar 

  49. Jones, L.C., Frondoza, C., Hungerford, D.S.: Immunohistochemical evaluation of interface membranes from failed cemented and uncemented acetabular components. J. Biomed. Mater. Res. 48(6), 889–898 (1999). https://doi.org/10.1002/(SICI)1097-4636(1999) 48:6%3c889::AID-JBM19%3e3.0.CO;2-S

    Article  Google Scholar 

  50. Joos, U., Büchter, A., Wiesmann, H.-P., Meyer, U.: Strain driven fast osseointegration of implants. Head Face Med. 1, 6 (2005). https://doi.org/10.1186/1746-160X-1-6

    Article  Google Scholar 

  51. Kalfas, I.H.: Principles of bone healing. Neurosurg. Focus 10(4), 1–4 (2001)

    Article  Google Scholar 

  52. Klika, V., Angelés, M., García-Aznar, M.J., Maršík, F., Doblaré, M.: A coupled mechano-biochemical model for bone adaptation. Math. Biol. 69, 1383–1429 (2014). https://doi.org/10.1007/s00285-013-0736-9

    Article  MathSciNet  MATH  Google Scholar 

  53. Komarova, S.V., Smith, R.J., Dixon, S.J., Sims, S.M., Wahl, L.M.: Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone 33, 206–215 (2003). https://doi.org/10.1016/S8756-3282(03)00157-1

    Article  Google Scholar 

  54. Kraaij, G., Zadpoor, A.A., Tuijthof, G.J.M., Dankelman, J., Nelissen, R.G.H.H., Valstar, E.R.: Mechanical properties of human bone-implant interface tissue in aseptically loose hip implants. J. Mech. Behav. Biomed. Mater. 38, 59–68 (2014). https://doi.org/10.1016/j.jmbbm.2014.06.010

    Article  Google Scholar 

  55. Kular, J., Tickner, J., Chim, S.M., Xu, J.: An overview of the regulation of bone remodelling at the cellular level. Clin. Biochem. 45(12), 863–873 (2012). https://doi.org/10.1016/j.clinbiochem.2012.03.021

    Article  Google Scholar 

  56. Kuzyk, P., Schemitsch, E.: The basic science of peri-implant bone healing. Indian J. Orthop. 45(2), 108–115 (2011)

    Article  Google Scholar 

  57. Lacroix, D., Prendergast, P.J.: A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomech. 35(9), 1163–1171 (2002). https://doi.org/10.1016/S0021-9290(02)00086-6

    Article  Google Scholar 

  58. Lerebours, C., Buenzli, P.R., Scheiner, S., Pivonka, P.: A multiscale mechanobiological model of bone remodelling predicts site-specific bone loss in the femur during osteoporosis and mechanical disuse. Biomech. Model. Mechanobiol. 15(1), 43–67 (2016). https://doi.org/10.1007/s10237-015-0705-x

    Article  Google Scholar 

  59. Li, J., Li, H., Shi, L., Fok, A.S.L., Ucer, C., Devlin, H., Silikas, N.: A mathematical model for simulating the bone remodeling process under mechanical stimulus. Dent. Mater. 23(9), 1073–1078 (2007). https://doi.org/10.1016/j.dental.2006.10.004

    Article  Google Scholar 

  60. Lieberman, D.E., Polk, J.D., Demes, B.: Predicting long bone loading from cross-sectional geometry. Am. J. Phys. Anthropol. 123(2), 156–171 (2004). https://doi.org/10.1002/ajpa.10316

    Article  Google Scholar 

  61. Liu, X., Niebur, G.L.: Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm. Biomech. Model. Mechanobiol. 7(4), 335–344 (2008). https://doi.org/10.1007/s10237-007-0100-3

    Article  Google Scholar 

  62. Mack, P., LaChance, P., Vose, G., Vogt, F.: Bone demineralization of foot and hand of Gemini-Titan IV, V and VII astronauts during orbital flight. Am. J. Roentgenol. Radium Ther. Nucl. Med. 100(3), 503–511 (1967)

    Article  Google Scholar 

  63. Malo, M.K.H., Rohrbach, D., Isaksson, H., Töyräs, J., Jurvelin, J.S., Tamminen, I.S., Raum, K.: Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Bone 53(2), 451–458 (2013). https://doi.org/10.1016/j.bone.2013.01.015

    Article  Google Scholar 

  64. Martin, T.J., Seeman, E.: Bone remodelling: its local regulation and the emergence of bone fragility. Best Pract. Res. Clin. Endocrinol. Metab. 22(5), 701–722 (2008). https://doi.org/10.1016/j.beem.2008.07.006

    Article  Google Scholar 

  65. Moerman, A., Zadpoor, A.A., Oostlander, A., Schoeman, M., Rahnamay Moshtagh, P., Pouran, B., Valstar, E.: Structural and mechanical characterisation of the peri-prosthetic tissue surrounding loosened hip prostheses. An explorative study. J. Mech. Behav. Biomed. Mater. 62, 456–467 (2016). https://doi.org/10.1016/j.jmbbm.2016.04.009

    Article  Google Scholar 

  66. Mukherjee, K., Gupta, S.: Simulation of tissue differentiation around acetabular cups?: the effects of implant-bone relative displacement and polar gap. Adv. Biomech. Appl. 1(2), 95–109 (2014)

    Article  Google Scholar 

  67. Nakagaki, S., Iijima, M., Handa, K., Koike, T., Yasuda, Y., Saito, T., Mizoguchi, I.: Micro-CT and histologic analyses of bone surrounding immediately loaded miniscrew implants: comparing compression and tension loading. Dent. Mater. J. 33(2), 196–202 (2014). https://doi.org/10.4012/dmj.2013-223

    Article  Google Scholar 

  68. Neale, S.D., Fujikawa, Y., Sabokbar, A., Gundle, R., Murray, D.W., Graves, S.E., Howie, D.W., Athanasou, N.A.: Human bone-derived cells support formation of human osteoclasts from arthroplasty-derived cells in vitro. J. Bone Jt. Surg. Br. Vol. 82(6), 892–900 (2000). https://doi.org/10.1302/0301-620x.82b6.10175

    Article  Google Scholar 

  69. Panteli, M., Pountos, I., Jones, E., Giannoudis, P.V.: Biological and molecular profile of fracture non-union tissue: current insights. J. Cell. Mol. Med. 19(4), 685–713 (2015). https://doi.org/10.1111/jcmm.12532

    Article  Google Scholar 

  70. Pivonka, P., Zimak, J., Smith, D.W., Gardiner, B.S., Dunstan, C.R., Sims, N.A., Mundy, G.R.: Model structure and control of bone remodeling?: a theoretical study. Bone 43, 249–263 (2008). https://doi.org/10.1016/j.bone.2008.03.025

    Article  Google Scholar 

  71. Prendergast, P.J., Huiskes, R., Søballe, K.: Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 30(6), 539–548 (1997). https://doi.org/10.1016/S0021-9290(96)00140-6

    Article  Google Scholar 

  72. Quinn, J., Joyner, C., Triffitt, J.T., Athanasou, N.A.: Polymethylmethacrylate-induced inflammatory macrophages resorb bone. J. Bone Joint Surg. 74(5), 652–658 (1992)

    Article  Google Scholar 

  73. Reilly, G.C., Currey, J.D.: The development of microcracking and failure in bone depends on the loading mode to which it is adapted. J. Exp. Biol. 202(5), 543–552 (1999)

    Google Scholar 

  74. Reilly, G.C., Currey, J.D.: The effects of damage and microcracking on the impact strength of bone 33, 337–343 (2000)

  75. Rho, J. Y., Kuhn-Spearing, L., & Zioupos, P. (1998). Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20(2), 92–102. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9679227

  76. Rho, J. Y., Roy, M., & Pharr, G. M. (2000). Comments on “Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur”. J. Biomech. 33(10), 1335–7. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11023378

  77. Rolfson, O., Kärrholm, J., Dahlberg, L.E., Garellick, G.: Patient-reported outcomes in the Swedish hip arthroplasty register: results of a nationwide prospective observational study. J. Bone Joint Surg. Br. Vol. 93(7), 867–875 (2011). https://doi.org/10.1302/0301-620X.93B7.25737

    Article  Google Scholar 

  78. Rubin, J., Rubin, C., Rae, C.: Molecular pathways mediating mechanical signaling in bone. Gene 367, 1–16 (2006). https://doi.org/10.1016/j.gene.2005.10.028

    Article  Google Scholar 

  79. Salisbury Palomares, K.T., Gleason, R.E., Mason, Z.D., Cullinane, D.M., Einhorn, T.A., Gerstenfeld, L.C., Morgan, E.F.: Mechanical stimulation alters tissue differentiation and molecular expression during bone healing. J. Orthop. Res. 27(9), 1123–1132 (2009). https://doi.org/10.1002/jor.20863

    Article  Google Scholar 

  80. Scala, I., Spingarn, C., Rémond, Y., Madeo, A., George, D.: Mechanically-driven bone remodeling simulation: application to LIPUS treated rat calvarial defects. Math. Mech. Solids. 22(10), 1976–1988 (2016). https://doi.org/10.1177/1081286516651473

    Article  MathSciNet  MATH  Google Scholar 

  81. Schindeler, A., McDonald, M.M., Bokko, P., Little, D.G.: Bone remodeling during fracture repair: the cellular picture. Semin. Cell Dev. Biol. 19(5), 459–466 (2008). https://doi.org/10.1016/j.semcdb.2008.07.004

    Article  Google Scholar 

  82. Schmitt, M., Allena, R., Schouman, T., Frasca, S., Collombet, J.M., Holy, X., Rouch, P.: Diffusion model to describe osteogenesis within a porous titanium scaffold. Comput. Methods Biomech. Biomed. Eng. 16(2015), 1–9 (2015). https://doi.org/10.1080/10255842.2014.998207

    Article  Google Scholar 

  83. Søballe, K., Hansen, E.S., Brockstedt-Rasmussen, H., Bünger, C.: Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. J. Bone Joint Surg. (Br.) 75(2), 270–278 (1993)

    Article  Google Scholar 

  84. Spingarn, C., Wagner, D., Rémond, Y., George, D.: Multiphysics of bone remodeling: a 2D mesoscale activation simulation. Bio-Med. Mater. Eng. 28(1), S153–S158 (2017)

    Article  Google Scholar 

  85. Srinivasan, S., Agans, S.C., King, K.A., Moy, N.Y., Poliachik, S.L., Gross, T.S.: Enabling bone formation in the aged skeleton via rest-inserted mechanical loading. Bone 33(6), 946–955 (2003). https://doi.org/10.1016/j.bone.2003.07.009

    Article  Google Scholar 

  86. Srinivasan, S., Gross, T.S.: Canalicular fluid flow induced by bending of a long bone. Med. Eng. Phys. 22(2), 127–133 (2000). https://doi.org/10.1016/S1350-4533(00)00021-7

    Article  Google Scholar 

  87. Srinivasan, S., Weimer, D.A., Agans, S.C., Bain, S.D., Gross, T.S.: Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle. J. Bone Miner. Res. 17(9), 1613–1620 (2002). https://doi.org/10.1359/jbmr.2002.17.9.1613

    Article  Google Scholar 

  88. Stanford, C.M., Brand, R.A.: Toward an understanding of implant occlusion and strain adaptive bone modeling and remodeling. J. Prosthet. Dent. 81(5), 553–561 (1999). https://doi.org/10.1016/S0278-2391(00)90358-6

    Article  Google Scholar 

  89. Stokes, I.A.F., Clark, K.C., Farnum, C.E., Aronsson, D.D.: Alterations in the growth plate associated with growth modulation by sustained compression or distraction. Bone 41(2), 197–205 (2007). https://doi.org/10.1016/j.bone.2007.04.180

    Article  Google Scholar 

  90. Strehle, J., Del Notaro, C., Orler, R., Isler, B.: The outcome of revision hip arthroplasty in patients older than age 80 years. J. Arthroplasty 15(6), 690–697 (2000). https://doi.org/10.1054/arth.2000.7111

    Article  Google Scholar 

  91. Tiwari, A.K., Prasad, J.: Computer modelling of bone’s adaptation: the role of normal strain, shear strain and fluid flow. Biomech. Model. Mechanobiol. 16(2), 1–16 (2016). https://doi.org/10.1007/s10237-016-0824-z

    Article  Google Scholar 

  92. Turner, C.H.: Three rules for bone adaptation to mechanical stimuli. Bone 23(5), 399–407 (1998). https://doi.org/10.1016/S8756-3282(98)00118-5

    Article  Google Scholar 

  93. Wang, H., Hao, Z., Wen, S.: Finite element analysis of the effect of medullary contact on fracture healing and remodeling in the intramedullary interlocking nail-fixed tibia fracture. Int. J. Numer. Methods Biomed. Eng. 33(4), 1–13 (2017). https://doi.org/10.1002/cnm.2816

    Article  MathSciNet  Google Scholar 

  94. Wiscott, H., Belser, U.: Lack of integration of smooth titanium surfaces: a working hypothesis based on strains generated in the surrounding bone. Clin. Oral Implant Res. 10, 429–444 (1999)

    Article  Google Scholar 

  95. Zioupos, P., Currey, J.D.: The extent of microcracking and the morphology of microcracks in damaged bone. J. Mater. Sci. 29(4), 978–986 (1994). https://doi.org/10.1007/BF00351420

    Article  ADS  Google Scholar 

  96. Zioupos, P., Hansen, U., Currey, J.D.: Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure. J. Biomech. 41(14), 2932–9 (2008). https://doi.org/10.1016/j.jbiomech.2008.07.025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie Frame.

Additional information

Communicated by Francesco dell’Isola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frame, J., Rohan, PY., Corté, L. et al. A mechano-biological model of multi-tissue evolution in bone. Continuum Mech. Thermodyn. 31, 1–31 (2019). https://doi.org/10.1007/s00161-017-0611-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0611-9

Keywords

Navigation