Skip to main content
Log in

Constitutive model for flake graphite cast iron automotive brake discs: induced anisotropic damage model under complex loadings

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The present paper details an elasto-viscoplastic constitutive model for automotive brake discs made of flake graphite cast iron. In a companion paper (Augustins et al. in Contin Mech Thermodyn, 2015), the authors proposed a one-dimensional setting appropriate for representing the complex behavior of the material (i.e., asymmetry between tensile and compressive loadings) under anisothermal conditions. The generalization of this 1D model to 3D cases on a volume element and the associated challenges are addressed. A direct transposition is not possible, and an alternative solution without unilateral conditions is first proposed. Induced anisotropic damage and associated constitutive laws are then introduced. The transition from the volume element to the real structure and the numerical implementation require a specific basis change. Brake disc simulations with this constitutive model show that unilateral conditions are needed for the friction bands. A damage deactivation procedure is therefore defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdi, R.E., Samrout, H.: Effet de la distribution du flux dans un disque de frein sous sollicitations thermomécaniques. Méc. Industr. Matériaux 52, 25–30 (1999)

  2. Augustins, L., Billardon, R., Hild, F.: Constitutive model for flake graphite cast iron automotive brake discs. From macroscopic multiscale models to a 1D rheological description. Contin. Mech. Thermodyn. (2015). doi:10.1007/s00161-015-0448-z

  3. Auld, B.A.: Acoustic Fields and Waves in Solids, pp. 74–75. Robert E. Krieger Publishing Company, Malabar, FL, USA (1990)

  4. Bagnoli F., Dolce F., Bernabei M.: Thermal fatigue cracks of fire fighting vehicles gray iron brake discs. Eng. Fail. Anal. 16, 152–163 (2009)

    Article  Google Scholar 

  5. Besson, J.: Implementation of material constitutive equations in finite element codes. http://mms2.ensmp.fr/msi_paris/nlfe/transparents/paris_tech2005b. Accessed 30 Sep 2013

  6. Chaboche, J.L.: Sur l’utilisation des variables d’état internes pour la description du comportement viscoplastique et de larupture par endommagement. In: Problémes NonLinéaires deMécanique, Symp. Franco-Polonais de rhéologie etmécanique, pp. 137–159 (1977)

  7. Chaboche, J.L.: Description phénoménologique de la viscoplasticité cyclique avec endommagement.Thèse d’Etat,Université Pierre et Marie Curie, Paris 6 (1978)

  8. Chaboche, J.L.: Le concept de contrainte effective appliquée à l’élasticité et à la viscoplasticité en présence d’un endommagement anisotrope. Mech. Behav. Anisotropic Solids Proc., Euromech 115, pp. 737–760 (1979)

  9. Chow C.L., Wang J.: An anisotropic theory of continuum damage mechanics for ductile fracture. Int. J. Fract. 27, 547–558 (1987)

    Google Scholar 

  10. Cordebois, J.P., Sidoroff, F.: Endommagement anisotrope en élasticité et plasticité. J. Méc. Théor. Appl. Numéro spécial, 45–60 (1982)

  11. Cristol, A.L., Desplanques, Y., Osterle, W., Degallaix, G.: Coupling between thermal localisation and friction mechanisms: heat accumulation effect. In: Proceedings of the 6th European Conference on Braking, pp. 61–69 (2010)

  12. D’Cruz, A.H.: Surface crack initiation in ventilated disc brakes under transient thermal loading. Proc. Inst. Mech. Eng. C382/05 (1989)

  13. Denoual C., Hild F.: A damage model for the dynamic fragmentation of brittle solids. Comput. Meth. Appl. Mech. Eng. 183, 247–258 (2000)

    Article  MATH  Google Scholar 

  14. Desmorat R., Gatuingt F., Ragueneau F.: Non local anisotropic damage model and related computational aspects for quasi-brittle materials. Eng. Fract. Mech. 74, 1539–1560 (2007)

    Article  Google Scholar 

  15. Dufrenoy, P.: Etude du comportement thermomécanique des disques de freins vis à vis des risques de défaillance. Application au domaine ferroviaire. Ph.D. thesis, Université des sciences et technologies de Lille (1995)

  16. Dufrenoy P., Bodovillé G., Degallaix G.: Damage mechanisms and thermomechanical loading of brake discs. Eur. Struct. Integr. Soc. 29, 167–176 (2002)

    Article  Google Scholar 

  17. Fabrikant V.I.: Complete solutions to some mixed boundary value problems in elasticity. Adv. Appl. Mech 27, 153–223 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Forquin P., Hild F.: A probabilistic damage model of the dynamic fragmentation process in brittle materials. Adv. Appl. Mech. 44, 1–72 (2010)

    Article  Google Scholar 

  19. Ganczarski, A., Cegielski, M.: Damage deactivation of engineering materials and structures. In: Altenbach, H., Kruch, S. (eds.) Advanced Materials Modelling for Structures, pp. 153–163. Springer, Berlin (2013)

  20. Germain, P.: Cours de mécanique des milieux continus. Masson, Paris (1973)

  21. Gilbert G.: An evaluation of the stress–strain properties of flake graphite cast iron in tension and compression. J. Br. Cast Iron Res. Assoc. 7, 745–789 (1959)

    Google Scholar 

  22. Halm D., Dragon A.: A model of anisotropic damage by mesocrack growth; unilateral effect. Int. J. Damage Mech. 5, 384–402 (1996)

    Article  MATH  Google Scholar 

  23. Kachanov L.M.: Continuum model of medium with cracks. J. Eng. Mech. Divis. 106, 1039–1051 (1980)

    Google Scholar 

  24. Krajcinovic, D.: Damage Mechanics. North Holland, Amsterdam (1996)

  25. Leckie, F.A., Onat, E.T.: Tensorial nature of damage measuring internal variables. In: Hult, J., Lemaitre, J. (eds.) Physical non-linearities in structural analysis. International Union of Theoretical and Applied Mechanics, pp. 140–155. Springer, Berlin, Heidelberg (1981)

  26. Lee S., Yeo T.: Temperature and coning analysis of brake rotor using axisymmetric finite element technique. Sci. Technol. 3, 17–22 (2000)

    Google Scholar 

  27. Lemaitre J., Chaboche J.L.: Aspect phénoménologique de la rupture par endommagement. J. Méc. Appl. 3, 317–365 (1978)

    Google Scholar 

  28. Lemaitre, J., Chaboche, J.L.: Mécanique des Matériaux Solides, 2nd edn. Dunod, Paris (1996)

  29. Lemaitre J., Desmorat R.: Engineering Damage Mechanics. Springer, Berlin, Heidelberg (2005)

  30. Limpert, R.: Brake Design and Safety, 2nd edn. SAE Inernational, Warrendale, PA, USA (1999)

  31. Lubarda V.A., Krajcinovic D.: Damage tensors and crack density distribution. Int. J. Solids Struct. 30, 2859–2877 (1993)

    Article  MATH  Google Scholar 

  32. Marquis, D.: Phénoménologie et thermodynamique—application au couplage entre la thermoélasticité, la plasticité, levieillissement et l’endommagement. Thèse d’Etat, Université Pierre et Marie Curie, Paris 6 (1989)

  33. Murakami, S., Ohno, A.: A continuum theory of creep and creep damage. In: Ponter, A.R.S., Hayhurst, D.R. (eds.) Creep in structures. International Union of Theoretical and Applied Mechanics, pp. 422–444. Springer, Berlin, Heidelberg (1981)

  34. Ortiz, M.: A constitutive theory for the inelastic behavior of concrete. Mech. Mater. 4, 67–93 (1985)

  35. Ortiz M., Popov E.P.: Accuracy and stability of integration algorithms for elastoplastic constitutive relations. Int. J. Num. Methods Eng. 21, 1561–1576 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  36. Petry, C.: Caractérisation et modélisation du comportement et de l’endommagement d’alliages métalliques sur une grande plage de température. Ph.D. thesis, Ecole Normale Supérieure de Cachan (2006)

  37. Simulia: Abaqus/Strandard subroutines. Abaqus 6.13 User Subroutines Reference Manual Section 1.1 (2013)

  38. Skrzypek J., Ganczarski A.: Application of the orthotropic damage growth rule to variable principal directions. Int. J. Damage Mech. 7, 180–206 (1998)

    Article  Google Scholar 

  39. Vallet, F.: Etude de la fissuration d’un disque de frein à partir de l’analyse de son comportement thermomécanique. Ph.D. thesis, INSA, Lyon (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hild.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Augustins, L., Billardon, R. & Hild, F. Constitutive model for flake graphite cast iron automotive brake discs: induced anisotropic damage model under complex loadings. Continuum Mech. Thermodyn. 28, 1445–1460 (2016). https://doi.org/10.1007/s00161-015-0487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0487-5

Keywords

Navigation