Skip to main content
Log in

New blending constraints and a stack-recovery strategy for the multi-scale design of composite laminates

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This work presents a new strategy for dealing with blending requirements in the composite structures design. Firstly, new analytical expressions of blending constraints, in the polar parameters space, are derived. Secondly, a dedicated numerical strategy for the recovery of blended stacking sequences is presented. The proposed approach is implemented in the framework of the multi-scale two-level optimisation strategy (MS2LOS) for composite laminates design. The theoretical aspects of this work are supported by the application of the proposed methodology to a numerical benchmark taken from the literature. The results obtained by means of the MS2LOS based on the polar formalism outperform those reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. From http://www.midaco-solver.com/index.php/about

  2. Read: SSq is a function of SSp and NqNp new orientations. Alike expressions in the following mean similar relationships

Abbreviations

BCs:

Boundary conditions

CLT:

Classic laminate theory

CNLPP:

Constrained non-linear Programming problem

DOFs:

Degrees of freedom

FE:

Finite element

FSDT:

First-order shear deformation theory

FLP:

First-level problem

GA:

Genetic algorithm

LPs:

Lamination parameters

MICNLPP:

Mixed-integer constrained non-linear programming problem

MS2LOS:

Multi-scale two-level optimisation strategy

PPs:

Polar parameters

RSS:

Recovery stacking sequence

SR:

Stiffness recovery

SS:

Stacking sequence

SLP:

Second-level problem

SST:

Stacking sequence table

UNLPP:

Unconstrained non-linear programming problem

ξ :

Design variables vector

𝜃 :

Orientation

Φ :

Objective function

{ρ 0, ρ 0K, ρ 1, ϕ 1}:

Dimensionless PPs

A(A ):

(normalised) Membrane stiffness tensor

B(B ):

(normalised) Membrane/bending coupling stiffness tensor

\({\mathcal{B}}\) :

Blending operator

C(C ):

(normalised) Homogeneity stiffness tensor

D(D ):

(normalised) Bending stiffness tensor

H(H ):

(normalised) Out-of-plane shear stiffness tensor

h :

Laminate thickness

K lam :

Stiffness tensor of a laminate

N:

number of plies

\({\mathcal{M}}\) :

Modulus to normalise coupling and homogeneity tensors

\(\mathcal {N}\) :

Set of ply indices not interested by blending

n 0 :

Dimensionless number of plies

\(\mathcal {R}\) :

Residual

\({\mathcal{R}}\) :

Residual for a laminate

{T, R, Φ}:

PPs of the out-of-plane shear stiffness tensor of the base ply

{T 0, T 1, R 0, R 1, Φ 0, Φ 1}:

PPs of the base ply reduced stiffness tensor

References

Download references

Funding

This paper presents part of the activities carried out within the research project PARSIFAL (“PrandtlPlane ARchitecture for the Sustainable Improvement of Future AirpLanes”), which has been funded by the European Union under the Horizon 2020 Research and Innovation Program (Grant Agreement No. 723149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Montemurro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Ming Zhou

Replication of results

Authors are confident that the results can be reproduced. Readers interested in more details are encouraged to contact the corresponding author via email.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. A note on the square of the sum of n terms

Consider the square of the sum of terms \(a_{1}, a_{2}, \dots ,a_{n}\), \(n\in \mathbb {N}\). Hence, it easy to see that

$$ \begin{array}{@{}rcl@{}} \left( {\sum}_{k=1}^{n} a_{k} \right)^{2} &=& \sum\limits_{k=1}^{n} {a_{k}^{2}} + 2\sum\limits_{k=1}^{n-1}a_{k}\sum\limits_{j=k+1}^{n} a_{j} \\&=& \sum\limits_{k=1}^{n} {a_{k}^{2}} + 2\sum\limits_{k=1}^{n-1}\sum\limits_{j=k+1}^{n} a_{k} a_{j}, \end{array} $$
(A1.1)

where the distributivity property of sum and product operators has been used.

The number of the double-product terms is equal to

$$ \begin{array}{@{}rcl@{}} \sum\limits_{k=1}^{n-1}\sum\limits_{j=k+1}^{n} 1 =\sum\limits_{k=1}^{n-1} \left( n- k\right) = n\sum\limits_{k=1}^{n-1} - \sum\limits_{k=1}^{n-1}k = n(n-1)\\ - \frac{n(n-1)}{2} = \frac{n(n-1)}{2}.\\ \end{array} $$
(A1.2)

If a n-term sequence {ak} has indices k progressively taking values in an arbitrary, but ordered, set of n natural numbers, say \(\mathcal {A}\), the square of the sum of the sequence elements can be written as

$$ \left( {\sum}_{k\in\mathcal{A}} a_{k} \right)^{2} = \sum\limits_{k\in\mathcal{A}}{a_{k}^{2}} + 2 \underset{j>k}{\underset{k,j\in \mathcal{A}}{\sum}} a_{k}a_{j}. $$
(A1.3)

Of course, the result of (A1.2) still holds.

Appendix 2. Study of B = O for blending constraints

Uncoupling condition on laminates is B = O, which can be stated as follows:

$$ \sum\limits_{k=1}^{N} b_{k} \mathrm{e}^{\mathrm{i}\beta\theta_{k}} = 0, \beta=2,4. $$
(A2.1)

Considering (6) and (9), (A2.1) may be expressed as:

$$ \frac{N(N+1)}{2} \rho_{0K} \mathrm{e}^{\mathrm{i}4{\varPhi}_{1}^{A^{*}}} = \sum\limits_{k=1}^{N} k \mathrm{e}^{\mathrm{i}4\theta_{k}}, $$
(A2.2)
$$ \frac{N(N+1)}{2} \rho_{1} \mathrm{e}^{\mathrm{i}2{\varPhi}_{1}^{A^{*}}} = \sum\limits_{k=1}^{N} k \mathrm{e}^{\mathrm{i}2\theta_{k}}. $$
(A2.3)

As already done in Section 5, consider two laminates denoted with labels p and q, such that, without loss of generality, Np > Nq. Writing (A2.2) and (A2.3) for the two laminates, subtracting member-by-member, taking the square of both members, one obtains:

$$ \begin{array}{ll} \left[{\Delta}_{pq} \left( \frac{N(N+1)}{2}\rho_{0K} c_{4}\right)\right]^{2} + \left[ {\Delta}_{pq} \left( \frac{N(N+1)}{2}\rho_{0K} s_{4}\right) \right]^{2} \\=\left( \sum\limits_{k\in \mathcal{N}} k\cos 4\theta_{k} + \sum\limits_{k=1}^{N_{q}} \left[\mathcal{B}(k) - k \right]\cos 4\theta_{k} \right)^{2} \\ + \left( \sum\limits_{k\in \mathcal{N}} k\sin 4\theta_{k} + \sum\limits_{k=1}^{N_{q}} \left[\mathcal{B}(k) - k \right]\sin 4\theta_{k} \right)^{2}, \end{array} $$
(A2.4)

and

$$ \begin{array}{ll} \left[{\Delta}_{pq} \left( \frac{N(N+1)}{2}\rho_{1} c_{2}\right)\right]^{2} + \left[ {\Delta}_{pq} \left( \frac{N(N+1)}{2}\rho_{1} s_{2}\right) \right]^{2} \\=\left( \sum\limits_{k\in \mathcal{N}} k\cos 2\theta_{k} + \sum\limits_{k=1}^{N_{q}} \left[\mathcal{B}(k) - k \right]\cos 2\theta_{k} \right)^{2} \\ + \left( \sum\limits_{k\in \mathcal{N}} k\sin 2\theta_{k} + \sum\limits_{k=1}^{N_{q}} \left[\mathcal{B}(k) - k \right]\sin 2\theta_{k} \right)^{2}. \end{array} $$
(A2.5)

Consider, for the sake of simplicity, the right-hand side of (A2.4) (similar considerations hold for (A2.5). It can be expressed as:

$$ \begin{array}{@{}rcl@{}} \left( \sum\limits_{k\in \mathcal{N}} k\cos 4\theta_{k} \right)^{2} &+& \left( \sum\limits_{k=1}^{N_{q}} \left[\mathcal{B}(k) - k \right]\cos 4\theta_{k} \right)^{2} \\&+& 2 \left( \sum\limits_{k\in \mathcal{N}} k\cos 4\theta_{k}\right)\left( \sum\limits_{k=1}^{N_{q}} \left[\mathcal{B}(k) - k \right]\cos 4\theta_{k} \right)\\ &+& \left( \sum\limits_{k\in \mathcal{N}} k\sin 4\theta_{k} \right)^{2} + \left( \sum\limits_{k=1}^{N_{q}} \left[\mathcal{B}(k) - k \right]\sin 4\theta_{k} \right)^{2} \\&+& 2 \left( \sum\limits_{k\in \mathcal{N}} k\sin 4\theta_{k}\right)\left( \sum\limits_{k=1}^{N_{q}} \left[\mathcal{B}(k) - k \right]\sin 4\theta_{k} \right),\\ &=:& c_{1} + c_{2} + c_{3} + c_{4} + c_{5} + c_{6}. \end{array} $$
(A2.6)

Considering Appendix 1 and the elementary trigonometric identity \(\cos \limits \alpha \cos \limits \beta + \sin \limits \alpha \sin \limits \beta = \cos \limits (\alpha - \beta )\), the sum c1 + c4 gives:

$$ \sum\limits_{k\in \mathcal{N}} k^{2} + 2 \underset{j>k}{\underset{k,j\in \mathcal{N}}{\sum}} kj \cos 4(\theta_{j} - \theta_{k}). $$
(A2.7)

In a complete similar manner, the sum c2 + c5 simplifies to

$$ \sum\limits_{k=1}^{N_{q}} \left[\mathcal{B}(k) - k \right]^{2} + 2 \sum\limits_{k=1}^{N_{q}-1} \sum\limits_{j=k+1}^{N_{q}} \left[\mathcal{B}(k) - k \right]\!\left[\mathcal{B}(j) - j \right]\cos 4(\theta_{k} - \theta_{j}). $$
(A2.8)

The sum c3 + c6 can be rewritten as (using the distributivity property of sum and product operators and the aforementioned trigonometric identity)

$$ \begin{array}{ll} &2\sum\limits_{k=1}^{N_{q}} \sum\limits_{j\in \mathcal{N}} \left[\mathcal{B}(k) - k \right] j\cos 4\theta_{j} \cos 4\theta_{k} \\&+ 2 \sum\limits_{k=1}^{N_{q}} \sum\limits_{j\in \mathcal{N}} \left[\mathcal{B}(k) - k \right] j\sin 4\theta_{j}\sin 4\theta_{k} \\ =&2\sum\limits_{k=1}^{N_{q}} \sum\limits_{j\in \mathcal{N}} \left[\mathcal{B}(k) - k \right] j \left( \cos 4\theta_{j} \cos 4\theta_{k} + \sin 4\theta_{j} \sin 4\theta_{k}\right) \\ =&2\sum\limits_{k=1}^{N_{q}} \sum\limits_{j\in \mathcal{N}} \left[\mathcal{B}(k) - k \right] j \cos 4(\theta_{j} - \theta_{k}) . \end{array} $$
(A2.9)

Assembling (A2.7), (A2.8) and (A2.9), (A2.6) simplifies to:

$$ \begin{array}{ll} &\sum\limits_{k\in \mathcal{N}} k^{2} + 2 \underset{j>k}{\underset{k,j\in \mathcal{N}}{\sum}} kj \cos(4(\theta_{j} - \theta_{k})) + \sum\limits_{k=1}^{N_{q}} \left[\mathcal{B}(k) - k \right]^{2}\\ &+ 2 \sum\limits_{k=1}^{N_{q}-1} \sum\limits_{j=k+1}^{N_{q}} \left[\mathcal{B}(k) - k \right]\left[\mathcal{B}(j) - j \right]\cos 4(\theta_{k} - \theta_{j})\\ &+ 2\sum\limits_{k=1}^{N_{q}}\sum\limits_{j\in \mathcal{N}} j\left[\mathcal{B}(k) - k \right] \cos 4(\theta_{k} - \theta_{j}). \end{array} $$
(A2.10)

It is simple to see that

$$ \begin{array}{ll} &\text{Equation (A2.10)} \leq \sum\limits_{k\in \mathcal{N}} k^{2} + 2 \underset{j>k}{\underset{k,j\in \mathcal{N}}{\sum\limits}} kj \\&+ \sum\limits_{k=1}^{N_{q}} \left[\mathcal{B}(k) - k \right]^{2} \\&+ 2 \sum\limits_{k=1}^{N_{q}-1} \sum\limits_{j=k+1}^{N_{q}} \left[\mathcal{B}(k) - k \right]\left[\mathcal{B}(j) - j \right]\\&+ 2\sum\limits_{k=1}^{N_{q}}\sum\limits_{j\in \mathcal{N}} j\left[\mathcal{B}(k) - k \right], \end{array} $$
(A2.11)

since terms of the form \(\left ({\mathcal{B}}(\cdot ) - \cdot \right )\) are always non-negative, because of property (b) of Def. 2.2.

Consider the particular case for which \({\mathcal{B}}(k)=k\); it follows that \(\mathcal {N}=\{i \ | \ N_{q}+1\leq i\leq N_{p}\}\). Equation (A2.11) simplifies to:

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{k=N_{q}+1}^{N_{p}} k^{2} + 2 \sum\limits_{i=N_{q}+1}^{N_{p}-1}\sum\limits_{j=i+1}^{N_{p}} ij \\&&= \frac{1}{4}[ {N_{p}^{4}} + {N_{q}^{4}} + 2\left( {N_{p}^{3}} + {N_{q}^{3}}\right) + {N_{p}^{2}} + {N_{q}^{2}}\\ &&- 2N_{p}N_{q}\left( N_{p}N_{q} + N_{p} + N_{q} + 1\right) ] =: C_{B}. \end{array} $$
(A2.12)

The final blending constraints, for the considered particular case, read:

$$ \begin{array}{@{}rcl@{}} g_{\text{blend}-0}^{\mathrm{C_{B}}} &:=& \left[{\Delta}_{pq} \left( \frac{N(N+1)}{2}\rho_{0K} c_{4}\right)\right]^{2} \\&&+ \left[ {\Delta}_{pq} \left( \frac{N(N+1)}{2}\rho_{0K} s_{4}\right) \right]^{2} - C_{B}, \\ g_{\text{blend}-1}^{\mathrm{C_{B}}} &:=& \left[{\Delta}_{pq} \left( \frac{N(N+1)}{2}\rho_{1} c_{2}\right)\right]^{2} \\&&+ \left[ {\Delta}_{pq} \left( \frac{N(N+1)}{2}\rho_{1} s_{2}\right) \right]^{2} - C_{B},\\ g_{\text{blend}-i}^{\mathrm{C_{B}}} \leq 0, \ i&=&0,1. \end{array} $$
(A2.13)

Figure 10 shows, for the reference laminate of Section 5, that condition of (20) is stricter than the one expressed by (A2.13). Even though CB is not the sharpest upper bound of (A2.11), the fact that the condition B = O does not introduce further constraints on PPs can be inferred. In fact, if there exists another estimate C > CB (for which (A2.13) would read \(g_{\text {blend}-i}^{C} \leq 0\), i = 0, 1, with a clear meaning of notation), the feasible domain can only be larger than the (green) one in Fig. 10.

Fig. 10
figure 10

Comparison between blending constraints

The result may be due to the fact that increasing separately the “angle terms”, as done in (A2.11), and the “arrangement terms”, as done in (A2.12), is too rude. Indeed, a coupling between the aforementioned terms exists, which makes finding a good estimate of (A2.10) a cumbersome, probably impossible, task.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picchi Scardaoni, M., Montemurro, M., Panettieri, E. et al. New blending constraints and a stack-recovery strategy for the multi-scale design of composite laminates. Struct Multidisc Optim 63, 741–766 (2021). https://doi.org/10.1007/s00158-020-02725-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-020-02725-x

Keywords

Navigation