Skip to main content
Log in

Adaptive infill sampling criterion for multi-fidelity gradient-enhanced kriging model

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Multi-fidelity surrogate (MFS) method is very promising for the optimization of complex problems. The optimization capability of MFS can be improved by infilling samples in the optimization process. Furthermore, once the gradient information is provided, the gradient-enhanced kriging (GEK) can be utilized to construct a more accurate MFS model. However, for the existing infill sampling criterions, it is difficult to improve the optimization speed without sacrificing the optimization gains. In this paper, a novel infill sampling criterion named Adaptive Multi-fidelity Expected Improvement (AMEI) is proposed, in which the prediction accuracy and the optimization potential of the surrogate model are both considered. With a set of extra samples calculated, the AMEI determines which fidelity model for the new sample is to be added. Through two numerical examples and two engineering examples, it can be found that the AMEI always provides the best optimization result with the fewest analysis calls, and the robustness is also good. The optimization capability and efficiency of the AMEI have been demonstrated compared with traditional criterions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Booker AJ, Dennis JJ, Frank PD, Serafini DB, Torczon V, Trosset MW (1999) A rigorous framework for optimization of expensive functions by surrogates. Struct Multidiscip Optim 17(1):1–13

    Article  Google Scholar 

  • Choi S, Alonso JJ, Kroo IM, Wintzer M (2004) Multi-fidelity design optimization of low-boom supersonic business jets. J Aircr 45(1):106–118

    Article  Google Scholar 

  • Chung HS, Alonso J (2002) Using gradients to construct cokriging approximation models for high-dimensional design optimization problems. In: 40th AIAA Aerospace Sciences Meeting & Exhibit. https://doi.org/10.2514/6.2002-317

    Chapter  Google Scholar 

  • Fischer CC, Grandhi RV (2013) Utilizing an adjustment factor to scale between multiple fidelities within a design process: a stepping stone to dialable fidelity design. In: 16th AIAA Non-Deterministic Approaches Conference. https://doi.org/10.2514/6.2014-1011

    Chapter  Google Scholar 

  • Fischer CC, Grandhi RV (2015) A surrogate-based adjustment factor approach to multi-fidelity design optimization. In: 17th AIAA Non-Deterministic Approaches Conference. https://doi.org/10.2514/6.2015-1375

    Chapter  Google Scholar 

  • Forrester AI, Keane AJ (2009) Recent advances in surrogate-based optimization. J Prog Aerosp Sci 45(1–3):50–79

    Article  Google Scholar 

  • Frazier PI, Powell WB, Dayanik S (2008) A knowledge-gradient policy for sequential information collection. SIAM J Control Optim 47(5):2410–2439

    Article  MathSciNet  Google Scholar 

  • Gano SE, Renaud JE, Sanders B (2004) Variable fidelity optimization using a kriging based scaling function. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. https://doi.org/10.2514/6.2004-4460

    Chapter  Google Scholar 

  • Giselle Fernández-Godino M, Park C, Kim NH, Haftka RT (2019) Issues in deciding whether to use multifidelity surrogates. AIAA J 57. https://doi.org/10.2514/1.J057750

  • Guo Z, Song L, Park C, Li J, Haftka RT (2018) Analysis of dataset selection for multi-fidelity surrogates for a turbine problem. Struct Multidiscip Optim 57(6):2127–2142

    Article  Google Scholar 

  • Haftka RT (1991) Combining global and local approximations. AIAA J 29(9):1523–1525

    Article  Google Scholar 

  • Haftka RT, Villanueva D, Chaudhuri A (2016) Parallel surrogate-assisted global optimization with expensive functions–a survey. Struct Multidiscip Optim 54(1):3–13

    Article  MathSciNet  Google Scholar 

  • Han ZH, Zhang KS (2012) Surrogate-based optimization. InTech Book:343–362

  • Han ZH, Zimmerman R, Görtz S (2012) Alternative cokriging method for variable-fidelity surrogate modeling. AIAA J 50(5):1205–1210

    Article  Google Scholar 

  • Han ZH, Görtz S, Zimmermann R (2013) Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function. Aerosp Sci Technol 25:177–189

    Article  Google Scholar 

  • Hao P, Wang B, Li G (2012) Surrogate-based optimum design for stiffened shells with adaptive sampling. AIAA J 50(11):2389–2407

    Article  Google Scholar 

  • Hao P, Yuan XJ, Liu HL, Wang B, Liu C, Yang DX, Zhan SX (2017a) Isogeometric buckling analysis of composite variable-stiffness panels. Compos Struct 165:192–208

    Article  Google Scholar 

  • Hao P, Wang YT, Liu XX, Wang B, Li G (2017b) An efficient adaptive-loop method for non-probabilistic reliability-based design optimization. Comput Method Appl M 324:689–711

    Article  MathSciNet  Google Scholar 

  • Hao P, Wang YT, Liu C, Wang B, Wu H (2017c) A novel non-probabilistic reliability-based design optimization algorithm using enhanced chaos control method. Comput Method Appl M 318:572–593

    Article  MathSciNet  Google Scholar 

  • Hao P, Yuan XJ, Liu C, Liu HL, Wang B, Li G, Niu F (2018a) An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels. Comput Method Appl M 339:205–238

    Article  MathSciNet  Google Scholar 

  • Hao P, Feng SJ, Zhang K, Li Z, Wang B, Li G (2018b) Adaptive gradient-enhanced kriging model for variable-stiffness composite panels using isogeometric analysis. Struct Multidiscip Optim 58(1):1–16

    Article  MathSciNet  Google Scholar 

  • Hao P, Wang YT, Ma R, Liu H, Wang B, Li G (2019) A new reliability-based design optimization framework using isogeometric analysis. Comput Method Appl M 345:476–501

    Article  MathSciNet  Google Scholar 

  • Havens D, Shiyekar S, Norris A, Bird RK, Kapania RK, Olliffe R (2011) Design, optimization, and evaluation of integrally stiffened Al-2139 panel with curved stiffeners. NASA/TP–2011-217178

  • Huang D, Allen TT, Notz WI (2006a) Global optimization of stochastic black-box systems via sequential kriging meta-models. J Glob Optim 34(3):441–466

    Article  MathSciNet  Google Scholar 

  • Huang D, Allen TT, Notz WI, Miller RA (2006b) Sequential kriging optimization using multiple-fidelity evaluations. Struct Multidiscip Optim 32(5):369–382

    Article  Google Scholar 

  • Huang G, Wang H, Li G (2016) An efficient reanalysis assisted optimization for variable-stiffness composite design by using path functions. Compos Struct 153:409–420

    Article  Google Scholar 

  • Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492

    Article  MathSciNet  Google Scholar 

  • Kennedy MC, O'Hagan A (2000) Predicting the output from a complex computer code when fast approximations are available. Biometrika 87(1):1–13

    Article  MathSciNet  Google Scholar 

  • Li Z, Ruan SL, Gu JF, Wang XY, Shen CY (2016) Investigation on parallel algorithms in efficient global optimization based on multiple points infill criterion and domain decomposition. Struct Multidiscip Optim 54(4):747–773

    Article  MathSciNet  Google Scholar 

  • Liu J, Hang ZH, Song WP (2012) Comparison of infill sampling criteria in kriging-based aerodynamic optimization. P 28 C Int Counc Aer

  • Liu Y, Chen S, Wang F, Xiong F (2018) Sequential optimization using multi-level cokriging and extended expected improvement criterion. Struct Multidiscip Optim 7:1–19

    MathSciNet  Google Scholar 

  • Mcfarland J, Mahadevan S, Romero V, Swiler L (2015) Calibration and uncertainty analysis for computer simulations with multivariate output. AIAA J 46(5):1253–1265

    Article  Google Scholar 

  • Mehmani A, Chowdhury S, Messac A (2015) Predictive quantification of surrogate model fidelity based on modal variations with sample density. Struct Multidiscip Optim 52(2):353–373

    Article  Google Scholar 

  • Park C, Haftka RT, Kim NH (2017) Remarks on multi-fidelity surrogates. Struct Multidiscip Optim 55:1029–1050

    Article  MathSciNet  Google Scholar 

  • Poloczek M, Wang J, Frazier P (2017) Multi-information source optimization. Adv Neural Inform Pr:4288–4298

  • Qian PZG, Wu CFJ (2008) Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments. Technometrics 50(2):192–204

    Article  MathSciNet  Google Scholar 

  • Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Tucker PK (2005) Surrogate-based analysis and optimization. Prog Aerosp Sci 41(1):1–28

    Article  Google Scholar 

  • Rehman SU, Langelaar M, Keulen FV (2014) Efficient kriging-based robust optimization of unconstrained problems. J Comput Sci 5(6):872–881

    Article  MathSciNet  Google Scholar 

  • Sasena MJ, Papalambros P, Goovaerts P (2002) Exploration of metamodeling sampling criteria for constrained global optimization. Eng Optim 34(3):263–278

    Article  Google Scholar 

  • Sóbester A, Leary SJ, Keane AJ (2005) On the design of optimization strategies based on global response surface approximation models. J Glob Optim 33(1):31–59

    Article  MathSciNet  Google Scholar 

  • Song XG, Lv LY, Sun W, Zhang J (2019) A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models. Struct Multidiscip Optim:1–17

  • Ulaganathan S, Couckuyt I, Ferranti F (2015) Performance study of multi-fidelity gradient enhanced kriging. Struct Multidiscip Optim 51(5):1017–1033

    Article  Google Scholar 

  • Viana FAC, Haftka RT, Steffen V (2009) Multiple surrogates: how cross-validation errors can help us to obtain the best predictor. Struct Multidiscip Optim 39(4):439–457

    Article  Google Scholar 

  • Wang H, Li G (2012) Min–median–max metamodel-based unconstrained nonlinear optimization problems. Struct Multidiscip Optim 45(3):401–415

    Article  MathSciNet  Google Scholar 

  • Wang B, Tian K, Hao P, Cai YW, Li YW, Sun Y (2015) Hybrid analysis and optimization of hierarchical stiffened plates based on asymptotic homogenization method. Compos Struct 132:136–147

    Article  Google Scholar 

  • Wu D, Long T, Li YL, Jiang ML, Wang H, Huang B (2012) Aero-structure coupled optimization of high aspect ratio wing using enhanced adaptive response surface method. In: 14th AIAA ISSMO MULT A

  • Yamazaki W, Mavriplis DJ (2013) Derivative-enhanced variable fidelity surrogate modeling for aerodynamic functions. AIAA J 51(1):126–137

    Article  Google Scholar 

  • Yamazaki W, Rumpfkeil MP, Mavriplis DJ (2010) Design optimization utilizing gradient/hessian enhanced surrogate model. In: 28th AIAA Applied Aerodynamics Conference. Doi: 10.2514/6.2010-4363

  • Zhang Y, Han ZH, Zhang KS (2018) Variable-fidelity expected improvement method for efficient global optimization of expensive functions. Struct Multidiscip Optim 58(4):1431–1451

    Article  MathSciNet  Google Scholar 

  • Zheng J, Shao X, Gao L, Jiang P, Li Z (2013a) A hybrid variable-fidelity global approximation modelling method combining tuned radial basis function base and kriging correction. J Eng Design 24(8):604–622

    Article  Google Scholar 

  • Zheng L, Hedrick TL, Mittal R (2013b) A multi-fidelity modelling approach for evaluation and optimization of wing stroke aerodynamics in flapping flight. J Fluid Mech 721(4):118–154

    Article  Google Scholar 

  • Zhu JH, Guo WJ, Zhang WH, Liu T (2017) Integrated layout and topology optimization design of multi-frame and multi-component fuselage structure systems. Struct Multidiscip Optim 56(1):21–45

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (11772078 and 11372062), the Young Elite Scientists Sponsorship Program by CAST (2017QNRC001), and the Project supported by Liaoning Provincial Natural Science Foundation (2019-YQ-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Hao or Bo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Raphael Haftka

Replication of results

The GEK model is improved from traditional kriging model, where the Lophaven’s Matlab Kriging toolbox of DACE is employed. The appendix provides the Matlab codes used to generate the results.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix Matlab code for the AMEI

Appendix Matlab code for the AMEI

%This part provides the codes of Hartmann 6 function in Section 3.2.2

%The parameters and the functions can be adjusted for other problems.

clear clc

dim=6;%dimension of this problem

mxn=50;%maximum iteration

t0=1*ones(1,dim);tl=0.00001*ones(1,dim);tu=20*ones(1,dim);%sets for GEK

Etol=0.0001;% the convergence condition

S1=lhsdesign(10,dim);%initial samples of low-fidelity model

S2=lhsdesign(5,dim);%initial samples of high-fidelity model

mt=lhsdesign(6,dim);%extra samples

xl=zeros(1,dim);xu=ones(1,dim);%lower and upper limitations of variables

n=size(mt,1);

global part y yc yt dmodel_low dmodel_Deta row

for i=1:size(S2,1)

[Asort,index]=sort(sum((S1-S2(i,:)).^2,2));

S1(index(1),:)=[];

end

S1=unique([S1;S2],'rows');

[y,yy]=fun_H(S2);%analysis code of high-fidelity model,y is response value, yy is the gradient information

[yc,yyc]=fun_L(S1);%analysis code of low-fidelity model

detay=max(y)-min(y);

infor=0;

Y1=[yc;yyc];Y2=[y;yy];

yh_t=fun_H(mt);yl_t=fun_L(mt);

for loop=1:mxn

[dmodel_low, ~] = dacefit(S1, Y1, @regpoly0,@corrgauss,t0,tl,tu);

[ty,~]= predictor(S2,dmodel_low);

[yt,yyt]=fun_L(S2);

[row,fval]=fmincon(@REG_FG,0.9,[],[],[],[],0.8,1.2);

d=y-row*yt;

dd=yy-row*yyt;

[dmodel_Deta, ~] = dacefit(S2,[d;dd],@regpoly0,@corrgauss,t0,tl,tu);

yL= predictor(mt,dmodel_low);

yD= predictor(mt,dmodel_Deta);

De=yh_t-row*yl_t;

rmse_RL=sqrt(1/n*sum((row*yL-yh_t).^2))/abs(mean(yh_t));

rmse_Deta=sqrt(sum((yD-De).^2)/n)/abs(mean(De));

part=1;

[news2,infor2]=ga(@AMEI,dim,[],[],[],[], xl,xu);

if -infor2>0.1*detay && rmse_RL<2*rmse_Deta && rmse_RL>rmse_Deta

infor=infor2;

[nyc,nyyc]=fun_L(news2);

S1=[S1;news2];yc=[yc;nyc];yyc=[yyc;nyyc];

Y1=[yc;yyc];

else

part=2;[news,infor]=ga(@AMEI,dim,[],[],[],[],xl,xu);

[nyc,nyyc]=fun_L(news);

S1=[S1;news];yc=[yc;nyc];yyc=[yyc;nyyc];

Y1=[yc;yyc];

[ny,nyy]=fun_H(news);

S2=[S2;news];y=[y;ny];yy=[yy;nyy];

Y2=[y;yy];

if -infor<Etol

break

end

end

end

function fun=REG_FG(row)

global yt y

fun=sqrt(sum((row*yt-y).^2));

end

function amei=AMEI(x)

global part y yc dmodel_low dmodel_Deta row

[n,~]=size(x);

[y1,s1]=predictor(x,dmodel_low);

[y2,s2]=predictor(x,dmodel_Deta);

if part==1 %update with AMEIL criterion

Ymin=min(yc); s=sqrt(s1);

Y=repmat(Ymin,n,1)-y1;

else %update with AMEIH criterion

Ymin=min(y); s=sqrt(row.^2.*s1+s2);

Y=repmat(Ymin,n,1)-y2-row.*y1;

end

id=find(s>0);

if isempty(id)==0

u=Y(id)./s(id);

PHI=normcdf(u,0,1);

phi=normpdf(u,0,1);

amei(id)=Y(id).*PHI+s(id).*phi;

end

id=find(s==0);

if isempty(id)==0

e=Y(id);

e(e<0)=0;

amei(id)=e;

end

amei=-amei;

end

function [y,dy]=fun_H(S)

for i=1:size(S,1)

x=S(i,:);

A=[10,3,17,3.5,1.7,8;0.05,10,17,0.1,8,14;3,3.5,1.7,10,17,8;17,8,0.05,10,0.1,14];

P=10^(-4)*[1312,1696,5569,124,8283,5886;2329,4135,8307,3736,1004,9991;

2348,1451,3522,2883,3047,6650;4047,8828,8732,5743,1091,381];

a=[1;1.2;3;3.2];

b=(repmat(x,4,[])'-P');

B=b.^2;

y(i,1)=1/(-1.94)*(2.58+a'*exp(-sum(A.*B',2)));

dy(1+(i-1)*size(S,2):i*size(S,2),1)=-1/1.94*(-2*a'.*A'.*b*exp(-sum(A.*B',2)));

end

end

function [y,dy]=fun_L(S)

for i=1:size(S,1)

x=S(i,:);

A=[10,3,17,3.5,1.7,8;0.05,10,17,0.1,8,14;3,3.5,1.7,10,17,8;17,8,0.05,10,0.1,14];

P=10^(-4)*[1312,1696,5569,124,8283,5886;2329,4135,8307,3736,1004,9991;

2348,1451,3522,2883,3047,6650;4047,8828,8732,5743,1091,381];

a=[0.5;0.5;2;4];

b=(repmat(x,4,[])'-P');

B=b.^2;

fv=(exp(-4/9)+exp(-4/9)*((-sum(A.*B',2)) +4)/9 );

y(i,1)=-1/1.94*(2.58+a'*(exp(-4/9)+exp(-4/9)*((-sum(A.*B',2)) +4)/9 ).^9);

dy(1+(i-1)*size(S,2):i*size(S,2),1)=2/1.94*A'.*b*(a.*fv.^8)*exp(-4/9);

end

end

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, P., Feng, S., Li, Y. et al. Adaptive infill sampling criterion for multi-fidelity gradient-enhanced kriging model. Struct Multidisc Optim 62, 353–373 (2020). https://doi.org/10.1007/s00158-020-02493-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-020-02493-8

Keywords

Navigation