Skip to main content
Log in

Adaptive gradient-enhanced kriging model for variable-stiffness composite panels using Isogeometric analysis

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Variable-stiffness panel is very promising for the cutout reinforcement of composite structures. However, due to the increase of design variables, the optimization of variable-stiffness panels becomes very challenging, even if surrogate model is utilized, because the fidelity of surrogate model is difficult to guarantee for high-dimensional problems. In this study, isogeometric analysis method (IGA) is employed to predict the buckling load of variable-stiffness panels, which can produce accurate prediction with less computational cost compared to traditional FEA, moreover, it can provide analytical sensitivity for optimization. On this basis, an adaptive gradient-enhanced kriging (GEK) model assisted by a novel multiple points infilling criterion is constructed for the global optimization of variable-stiffness composite panels. The proposed method is compared with traditional surrogate model, and results show that the proposed method can find a better optimum design in a more efficient manner. It can be concluded that the proposed method is able to fully explore the advantages of IGA including exact modelling, analysis and analytical sensitivity, which is particularly suitable for the design of variable-stiffness panels and other complex structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abouhamze M, Shakeri M (2007) Multi-objective stacking sequence optimization of laminated cylindrical panels using a genetic algorithm and neural networks. Compos Struct 81(2):253–263

    Article  Google Scholar 

  • Blom AW, Tatting BF, Hol JMAM (2009) Fiber path definitions for elastically tailored conical shells. Compos Part B Eng 40(1):77–84

    Article  Google Scholar 

  • Bourada F, Amara K, Tounsi A (2016) Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory. Steel Compos Struct 21(6):1287–1306

    Article  Google Scholar 

  • Brampton CJ, Wu KC, Kim HA (2015) New optimization method for steered fiber composites using the level set method. Struct Multidiscip O 52(3):493–505

    Article  MathSciNet  Google Scholar 

  • Chung HS, Alonso J (2002) Using gradients to construct cokriging approximation models for high-dimensional design optimization problems. AIAA paper 317:2002

    Google Scholar 

  • Gürdal Z, Tatting BF, Wu CK (2008) Variable stiffness composite panels: effects of stiffness variation on the in-plane and buckling response. Compos Part A-Appl S 39(5):911–922

    Article  Google Scholar 

  • Haftka RT, Villanueva D, Chaudhuri A (2016) Parallel surrogate-assisted global optimization with expensive functions–a survey. Struct Multidiscip O 54(1):3–13

    Article  MathSciNet  Google Scholar 

  • Han ZH, Görtz S (2012) Hierarchical kriging model for variable-fidelity surrogate modeling. AIAA J 50(9):1885–1896

    Article  Google Scholar 

  • Hao P, Wang B, Li G (2012) Surrogate-based optimum design for stiffened shells with adaptive sampling. AIAA J 50(11):2389–2407

    Article  Google Scholar 

  • Hao P, Wang B, Li G, Tian K, Du KF, Wang XJ, Tang XH (2013) Surrogate-based optimization of stiffened shells including load-carrying capacity and imperfection sensitivity. Thin-Walled Struct 72(15):164–174

    Article  Google Scholar 

  • Hao P, Wang B, Tian K, Li G, Zhang X (2016a) Optimization of curvilinearly stiffened panels with single cutout concerning the collapse load. Int J Struct Stab Dy 16:1550036–1–1550036–21

    Article  Google Scholar 

  • Hao P, Wang B, Du KF, Li G, Tian K, Sun Y, Ma YL (2016b) Imperfection-insensitive design of stiffened conical shells based on perturbation load approach. Compos Struct 136:405–413

    Article  Google Scholar 

  • Hao P, Yuan XJ, Liu HL, Wang B, Liu C, Yang DX, Zhan SX (2017a) Isogeometric buckling analysis of composite variable-stiffness panels. Compos Struct 165:192–208

    Article  Google Scholar 

  • Hao P, Wang YT, Liu C, Wang B (2017b) A novel non-probabilistic reliability-based design optimization algorithm using enhanced chaos control method. Comput Method Appl M 318:572–593

    Article  MathSciNet  Google Scholar 

  • Huang D, Allen TT, Notz WI (2006) Global optimization of stochastic black-box systems via sequential kriging meta-models. J Glob Optim 34(3):441–466

    Article  MathSciNet  MATH  Google Scholar 

  • Huang G, Wang H, Li G (2016) An efficient reanalysis assisted optimization for variable-stiffness composite design by using path functions. Compos Struct 153:409–420

    Article  Google Scholar 

  • Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39):4135–4195

  • Jing Z, Fan XL, Sun Q (2015) Global shared-layer blending method for stacking sequence optimization design and blending of composite structures. Compos B: Eng 69:181–190

    Article  Google Scholar 

  • Jing Z, Sun Q, Silberschmidt VV (2016) A framework for design and optimization of tapered composite structures part I: from individual panel to global blending structure. Compos Struct 154:106–128

    Article  Google Scholar 

  • Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492

    Article  MathSciNet  MATH  Google Scholar 

  • Kahya V (2016) Buckling analysis of laminated composite and sandwich beams by the finite element method. Compos Part B Eng 91:126–134

    Article  Google Scholar 

  • Karakaya Ş, Soykasap Ö (2009) Buckling optimization of laminated composite plates using genetic algorithm and generalized pattern search algorithm. Struct Multidiscip O 39(5):477–486

    Article  Google Scholar 

  • Kristinsdottir BP, Zabinsky ZB, Tuttle ME (2001) Optimal design of large composite panels with varying loads. Compos Struct 51(1):93–102

    Article  Google Scholar 

  • Laurenceau J, Sagaut P (2008) Building efficient response surfaces of aerodynamic functions with kriging and cokriging. AIAA J 46(2):498

    Article  Google Scholar 

  • Laurent L, Boucard PA, Soulier B (2013) Generation of a cokriging metamodel using a multiparametric strategy. Comput Mech 51(2):151–169

    Article  MathSciNet  MATH  Google Scholar 

  • Le Riche R, Haftka RT (1993) Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm. AIAA J 31(5):951–956

    Article  MATH  Google Scholar 

  • Li Z, Ruan S, Gu J (2016) Investigation on parallel algorithms in efficient global optimization based on multiple points infill criterion and domain decomposition. Struct Multidiscip O 54(4):747–773

    Article  MathSciNet  Google Scholar 

  • Liu W, Batill SM (2002) Gradient-enhanced response surface approximations using kriging models. AIAA/ISSMO S EXH M: 4–6

  • Liu B, Haftka RT, Akgün MA (2000) Permutation genetic algorithm for stacking sequence design of composite laminates. Comput Method Appl M 186(2):357–372

    Article  MathSciNet  MATH  Google Scholar 

  • Liu D, Toropov VV, Querin OM (2011) Bilevel optimization of blended composite wing panels. J Aircr 48(1):107

    Article  Google Scholar 

  • Lozano GG, Tiwari A, Turner C (2016) A review on design for manufacture of variable stiffness composite laminates. P I Mech Eng B 230(6):981–992

    Article  Google Scholar 

  • Madeo A, Groh RMJ, Zucco G (2017) Post-buckling analysis of variable-angle tow composite plates using Koiter's approach and the finite element method. Thin-Walled Struct 110:1–13

    Article  Google Scholar 

  • Montemurro M, Catapano A (2017) On the effective integration of manufacturability constraints within the multi-scale methodology for designing variable angle-tow laminates. Compos Struct 161:145–159

    Article  Google Scholar 

  • Morris MD, Mitchell TJ, Ylvisaker D (1993) Bayesian design and analysis of computer experiments: use of derivatives in surface prediction. Technometrics 35(3):243–255

    Article  MathSciNet  MATH  Google Scholar 

  • Muc A, Ulatowska A (2010) Design of plates with curved fiber format. Compos Struct 92(7):1728–1733

    Article  Google Scholar 

  • Nik MA, Fayazbakhsh K, Pasini D (2014) A comparative study of metamodeling methods for the design optimization of variable stiffness composites. Compos Struct 107:494–501

    Article  Google Scholar 

  • Niu XJ, Yang T, Du Y (2016) Tensile properties of variable stiffness composite laminates with circular holes based on potential flow functions. Arch Appl Mech 86(9):1551–1563

    Article  Google Scholar 

  • Peeters DMJ, Hesse S, Abdalla MM (2015) Stacking sequence optimisation of variable stiffness laminates with manufacturing constraints. Compos Struct 125:596–604

    Article  Google Scholar 

  • Rehman SU, Langelaar M, Keulen FV (2014) Efficient kriging-based robust optimization of unconstrained problems. J Comput Sci 5(6):872–881

    Article  MathSciNet  Google Scholar 

  • Rikards R, Abramovich H, Auzins J (2004) Surrogate models for optimum design of stiffened composite shells. Compos Struct 63(2):243–251

    Article  Google Scholar 

  • Rouhi M, Ghayoor H, Hoa SV (2017) Computational efficiency and accuracy of multi-step design optimization method for variable stiffness composite structures. Thin-Walled Struct 113:136–143

    Article  Google Scholar 

  • Sasena MJ, Papalambros P, Goovaerts P (2002) Exploration of metamodeling sampling criteria for constrained global optimization. Eng Optim 34(3):263–278

    Article  Google Scholar 

  • Sóbester A, Leary SJ, Keane AJ (2005) On the design of optimization strategies based on global response surface approximation models. J Glob Optim 33(1):31–59

    Article  MathSciNet  MATH  Google Scholar 

  • Soremekun G, Gürdal Z, Haftka RT (2001) Composite laminate design optimization by genetic algorithm with generalized elitist selection. Comput Struct 79(2):131–143

    Article  Google Scholar 

  • Sørensen SN, Lund E (2013) Topology and thickness optimization of laminated composites including manufacturing constraints. Struct Multidiscip O 48(2):249–265

    Article  MathSciNet  Google Scholar 

  • Todoroki A, Sekishiro M (2008) Modified efficient global optimization for a hat-stiffened composite panel with buckling constraint. AIAA J 46(9):2257

    Article  Google Scholar 

  • Ulaganathan S, Couckuyt I, Ferranti F (2015) Performance study of multi-fidelity gradient enhanced kriging. Struct Multidiscip O 51(5):1017–1033

    Article  Google Scholar 

  • Van den Brink WM, Vankan WJ, Maas R (2012) Buckling optimized variable stiffness laminates for a composite fuselage window section. Int C Aer SCI B

  • Viana FAC, Haftka RT, Watson LT (2013) Efficient global optimization algorithm assisted by multiple surrogate techniques. J Glob Optim 56(2):669–689

    Article  MATH  Google Scholar 

  • Wang P, Costin DP (1992) Optimum design of a composite structure with three types of manufacturing constraints. AIAA J 30(6):1667–1669

    Article  Google Scholar 

  • Wang K, Kelly D, Dutton S (2002) Multi-objective optimisation of composite aerospace structures. Compout Struct 57(1):141–148

    Article  Google Scholar 

  • Wang B, Hao P, Li G et al (2014) Two-stage size-layout optimization of axially compressed stiffened panels. Struct Multidiscip O 50(2):313–327

    Article  Google Scholar 

  • Wu Z, Raju G, Weaver PM (2015) Framework for the buckling optimization of variable-angle tow composite plates. AIAA J 53(12):3788–3804

    Article  Google Scholar 

  • Yamazaki W, Mavriplis DJ (2013) Derivative-enhanced variable fidelity surrogate modeling for aerodynamic functions. AIAA J 51(1):126–137

    Article  Google Scholar 

  • Yamazaki W, Rumpfkeil MP, Mavriplis DJ (2010) Design optimization utilizing gradient/hessian enhanced surrogate model. 20104363 AIAA

  • Zehnder N, Ermanni P (2006) A methodology for the global optimization of laminated composite structures. Compos Struct 72(3):311–320

    Article  Google Scholar 

  • Zhu JH, Zhang WH, Xia L (2016) Topology optimization in aircraft and aerospace structures design. Arch Comput Method E 23(4):595–622

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11772078), the Young Elite Scientists Sponsorship Program by CAST (2017QNRC001), the National Basic Research Program of China (2014CB049000 and 2014CB046506), the Fundamental Research Funds for Central University of China (DUT2013TB03 and DUT17GF102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Hao or Bo Wang.

Additional information

Responsible Editor: Hai Huang

Appendix

Appendix

The predicted function of GEK can be written as

$$ \widehat{y}(x)=\sum \limits_{i=1}^n{\omega}_i{y}_i+\sum \limits_{i=0}^n\sum \limits_{j=0}^d{\nu}_j^i\frac{\partial y\left({\boldsymbol{x}}^i\right)}{\partial {x}_j^i} $$
(30)

where ω i denotes the weight coefficient of the ith response value, and \( {\nu}_j^i \) denotes the weight coefficient the partial derivative of the jth dimensional design variable to the ith response value. The regression function is defined as

$$ {\displaystyle \begin{array}{l} Cov\left(Z\left({\boldsymbol{x}}^i\right),Z\left({\boldsymbol{x}}^j\right)\right)={\sigma}^2R\left({\boldsymbol{x}}^i,{\boldsymbol{x}}^j\right)\\ {} Cov\left(Z\left({\boldsymbol{x}}^i\right),\frac{\partial Z\left({\boldsymbol{x}}^j\right)}{\partial {\boldsymbol{x}}_k}\right)={\sigma}^2\frac{\partial R\left({\boldsymbol{x}}^i,{\boldsymbol{x}}^j\right)}{\partial {x}_k^j}=- Cov\left(\frac{\partial Z\left({\boldsymbol{x}}^i\right)}{\partial {\boldsymbol{x}}_k},Z\left({\boldsymbol{x}}^j\right)\right)\\ {} Cov\left(\frac{\partial Z\left({\boldsymbol{x}}^i\right)}{\partial {\boldsymbol{x}}_k},\frac{\partial Z\left({\boldsymbol{x}}^j\right)}{\partial {\boldsymbol{x}}_l}\right)={\sigma}^2\frac{\partial^2R\left({\boldsymbol{x}}^i,{\boldsymbol{x}}^j\right)}{\partial {x}_k^i\partial {x}_l^j}\end{array}} $$
(31)

So far, the weight coefficients can be calculated by solving the minimization problem about MSE(x) with the Lagrange multiplier approach. It can be found as follows

$$ \left\{\begin{array}{c}\sum \limits_{j=1}^n{\omega}_j Cov\left(Z\left({\boldsymbol{x}}^i\right),Z\left({\boldsymbol{x}}^j\right)\right)+\sum \limits_{j=1}^n{\nu}_i^j Cov\left(Z\left({\boldsymbol{x}}^i\right),\frac{\partial Z\left({\boldsymbol{x}}^j\right)}{\partial {x}_k}\right)+\frac{\mu }{2}= Cov\left(Z\left({\boldsymbol{x}}^i\right),Z\left(\boldsymbol{x}\right)\right),i=1,2\cdots, n\\ {}\sum \limits_{j=1}^n{\omega}_j Cov\left(\frac{\partial Z\left({\boldsymbol{x}}^i\right)}{\partial {x}_k},Z\left({\boldsymbol{x}}^j\right)\right)+\sum \limits_{j=1}^n{\nu}_i^j Cov\left(\frac{\partial Z\left({\boldsymbol{x}}^i\right)}{\partial {x}_k},\frac{\partial Z\left({\boldsymbol{x}}^j\right)}{\partial {x}_l}\right)= Cov\left(\frac{\partial Z\left({\boldsymbol{x}}^i\right)}{\partial {x}_k},Z\left(\boldsymbol{x}\right)\right),i=1,2\cdots, n\\ {}\sum \limits_{i=0}^n{\omega}_i=1\end{array}\right. $$
(32)

And μ is the Lagrange multipliers.

Also, (35) can be written as a matrix function

$$ \left[\begin{array}{cc}\boldsymbol{R}& \boldsymbol{F}\\ {}{\boldsymbol{F}}^T& 0\end{array}\right]\left[\begin{array}{c}\boldsymbol{\nu} \\ {}\tilde{\mu}\end{array}\right]=\left[\begin{array}{c}{\boldsymbol{r}}_{\left(\boldsymbol{x}\right)}\\ {}1\end{array}\right] $$
(33)

where

$$ {\displaystyle \begin{array}{l}\tilde{\mu}=-\frac{\mu }{2{\sigma}^2}={\left({\boldsymbol{F}}^T{\boldsymbol{R}}^{-1}\boldsymbol{F}\right)}^{-1}\left({\boldsymbol{F}}^T{\boldsymbol{R}}^{-1}{\boldsymbol{r}}_{\left(\boldsymbol{x}\right)}-1\right)\\ {}\boldsymbol{F}={\left[1,\cdots, 1,0,0,\cdots, 0\right]}^{\boldsymbol{T}}{\upepsilon \mathrm{\Re}}^{n+n\times \mathit{\dim}}\\ {}\boldsymbol{\nu} ={\left[{\omega}_1,\cdots, {\omega}_n,{\nu}_1^1,{\nu}_2^1,\cdots, {\nu}_{dim}^n\right]}^T={\boldsymbol{R}}^{-1}\left({\boldsymbol{r}}_{\left(\boldsymbol{x}\right)}-F\tilde{\mu}\right)\end{array}} $$

The correlation vector and the correlation matrix can be expressed as

$$ {\displaystyle \begin{array}{l}{\boldsymbol{r}}_{\left(\boldsymbol{x}\right)}={\left[\boldsymbol{R}\left(\boldsymbol{x},{\boldsymbol{x}}^1\right)\cdots \boldsymbol{R}\left(\boldsymbol{x},{\boldsymbol{x}}^n\right),\frac{\partial R\left(\boldsymbol{x},{\boldsymbol{x}}^1\right)}{\partial {x}_1^1},\frac{\partial R\left(\boldsymbol{x},{\boldsymbol{x}}^1\right)}{\partial {x}_2^1},\cdots, \frac{\partial R\left(\boldsymbol{x},{\boldsymbol{x}}^1\right)}{\partial {x}_{dim}^1},\cdots \frac{\partial R\left(\boldsymbol{x},{\boldsymbol{x}}^n\right)}{\partial {x}_{dim}^n}\right]}^T\in {\mathrm{\Re}}^{n+n\mathit{\dim}}\\ {}\boldsymbol{R}=\left[\begin{array}{cc}\begin{array}{ccc}\boldsymbol{R}\left({\boldsymbol{x}}^1,{\boldsymbol{x}}^1\right)& \cdots & \boldsymbol{R}\left({\boldsymbol{x}}^1,{\boldsymbol{x}}^n\right)\\ {}\vdots & \ddots & \vdots \\ {}\boldsymbol{R}\left({\boldsymbol{x}}^n,{\boldsymbol{x}}^1\right)& \cdots & \boldsymbol{R}\left({\boldsymbol{x}}^n,{\boldsymbol{x}}^n\right)\end{array}& \begin{array}{ccc}\frac{\partial R\left({\boldsymbol{x}}^1,{\boldsymbol{x}}^1\right)}{\partial {x}_1^1}& \frac{\partial R\left({\boldsymbol{x}}^1,{\boldsymbol{x}}^1\right)}{\partial {x}_2^1}& \cdots \kern0.5em \frac{\partial R\left({\boldsymbol{x}}^1,{\boldsymbol{x}}^n\right)}{\partial {x}_{dim}^n}\\ {}\vdots & \vdots & \begin{array}{cc}\ddots & \vdots \end{array}\\ {}\frac{\partial R\left({\boldsymbol{x}}^n,{\boldsymbol{x}}^1\right)}{\partial {x}_1^1}& \frac{\partial R\left({\boldsymbol{x}}^n,{\boldsymbol{x}}^1\right)}{\partial {x}_2^1}& \begin{array}{cc}\cdots & \frac{\partial R\left({\boldsymbol{x}}^n,{\boldsymbol{x}}^n\right)}{\partial {x}_{dim}^n}\end{array}\end{array}\\ {}\begin{array}{ccc}\frac{\partial R\left({\boldsymbol{x}}^1,{\boldsymbol{x}}^1\right)}{\partial {x}_1^1}& \cdots & \frac{\partial R\left({\boldsymbol{x}}^n,{\boldsymbol{x}}^1\right)}{\partial {x}_1^1}\\ {}\frac{\partial R\left({\boldsymbol{x}}^1,{\boldsymbol{x}}^1\right)}{\partial {x}_2^1}& \cdots & \frac{\partial R\left({\boldsymbol{x}}^n,{\boldsymbol{x}}^1\right)}{\partial {x}_2^1}\\ {}\begin{array}{c}\vdots \\ {}\frac{\partial R\left({\boldsymbol{x}}^1,{\boldsymbol{x}}^n\right)}{\partial {x}_{dim}^n}\end{array}& \begin{array}{c}\ddots \\ {}\cdots \end{array}& \begin{array}{c}\vdots \\ {}\frac{\partial R\left({\boldsymbol{x}}^n,{\boldsymbol{x}}^n\right)}{\partial {x}_{dim}^n}\end{array}\end{array}& \begin{array}{cccc}\frac{\partial^2R\left({\boldsymbol{x}}^1,{\boldsymbol{x}}^1\right)}{\partial {x}_1^1\partial {x}_1^1}& \frac{\partial^2R\left({\boldsymbol{x}}^1,{\boldsymbol{x}}^1\right)}{\partial {x}_1^1\partial {x}_2^1}& \cdots & \frac{\partial^2R\left({\boldsymbol{x}}^1,{\boldsymbol{x}}^n\right)}{\partial {x}_1^1\partial {x}_{dim}^n}\\ {}\frac{\partial^2R\left({\boldsymbol{x}}^1,{\boldsymbol{x}}^1\right)}{\partial {x}_2^1\partial {x}_1^1}& \frac{\partial^2R\left({\boldsymbol{x}}^1,{\boldsymbol{x}}^1\right)}{\partial {x}_2^1\partial {x}_2^1}& \cdots & \frac{\partial^2R\left({\boldsymbol{x}}^1,{\boldsymbol{x}}^n\right)}{\partial {x}_2^1\partial {x}_{dim}^n}\\ {}\vdots & \vdots & \ddots & \vdots \\ {}\frac{\partial^2R\left({\boldsymbol{x}}^1,{\boldsymbol{x}}^n\right)}{\partial {x}_{dim}^n\partial {x}_1^1}& \frac{\partial^2R\left({\boldsymbol{x}}^1,{\boldsymbol{x}}^n\right)}{\partial {x}_{dim}^n\partial {x}_2^1}& \cdots & \frac{\partial^2R\left({\boldsymbol{x}}^n,{\boldsymbol{x}}^n\right)}{\partial {x}_{dim}^n\partial {x}_{dim}^n}\end{array}\end{array}\right]\in {\mathrm{\Re}}^{\left(n+n\mathit{\dim}\right)\times \left(n+n\mathit{\dim}\right)}\end{array}} $$
(34)

The predicted MSE of \( \widehat{y}(x) \) is

$$ {s}_{\left(\boldsymbol{x}\right)}^2={\sigma}^2\Big(1+{\left({\boldsymbol{F}}^T{\boldsymbol{R}}^{-1}\boldsymbol{F}\right)}^{-1}\left(1-{\boldsymbol{F}}^T{\boldsymbol{R}}^{-1}{\boldsymbol{r}}_{(x)}\Big){}^2-{\boldsymbol{r}}_{(x)}^T{\boldsymbol{R}}^{-1}{\boldsymbol{r}}_{(x)}\right) $$
(35)

As both \( \widehat{y}(x) \) and MSE are the functions of σ2 and θ, θ can be calculated by the maximum likelihood estimation approach. \( \widehat{y}(x) \) follows the multidimensional normal distribution as

$$ {\displaystyle \begin{array}{l}P\left(Y\left(\boldsymbol{x}\right)|\boldsymbol{\theta}, {\sigma}^2,\widehat{y}\left(\boldsymbol{x}\right)\right)=L\left(\boldsymbol{\theta}, {\sigma}^2|\widehat{y}\left(\boldsymbol{x}\right)=Y\left(\boldsymbol{x}\right)\right)=\frac{1}{{\left(2{\pi \sigma}^2\right)}^{\frac{n\left(1+\mathit{\dim}\right)}{2}}{\left|\boldsymbol{R}\right|}^{\frac{1}{2}}}\exp \left[-\frac{{\left(\boldsymbol{Y}-\beta \boldsymbol{F}\right)}^{\boldsymbol{T}}{\boldsymbol{R}}^{-1}\left(\boldsymbol{Y}-\beta \boldsymbol{F}\right)}{2{\sigma}^2}\right]\\ {}\ln \left(L\left(\boldsymbol{\theta}, {\sigma}^2,\widehat{y}\left(\boldsymbol{x}\right)|Y\left(\boldsymbol{x}\right)\right)\right)=-\frac{n\left(1+\mathit{\dim}\right)}{2}\ln \left(2\pi \right)-\frac{n\left(1+\mathit{\dim}\right)}{2}\ln \left({\sigma}^2\right)-\frac{1}{2}\ln \left|\boldsymbol{R}\right|-\frac{{\left(\boldsymbol{Y}-\beta \boldsymbol{F}\right)}^{\boldsymbol{T}}{\boldsymbol{R}}^{-1}\left(\boldsymbol{Y}-\beta \boldsymbol{F}\right)}{2{\sigma}^2}\end{array}} $$
(36)

Take the partial derivative with respect to σ2 of this equation and let it zero, σ2 and β can be obtained as

$$ {\displaystyle \begin{array}{l}{\sigma}^2=\frac{1}{n\left(1+\mathit{\dim}\right)}{\left(\boldsymbol{Y}-\beta \boldsymbol{F}\right)}^{\boldsymbol{T}}{\boldsymbol{R}}^{-1}\left(\boldsymbol{Y}-\beta \boldsymbol{F}\right)\\ {}\beta ={\left({\boldsymbol{F}}^T{\boldsymbol{R}}^{-1}\boldsymbol{F}\right)}^{-1}{\boldsymbol{F}}^T{\boldsymbol{R}}^{-1}\boldsymbol{Y}\end{array}} $$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, P., Feng, S., Zhang, K. et al. Adaptive gradient-enhanced kriging model for variable-stiffness composite panels using Isogeometric analysis. Struct Multidisc Optim 58, 1–16 (2018). https://doi.org/10.1007/s00158-018-1988-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-1988-1

Keywords

Navigation