Skip to main content
Log in

A multi-objective robust optimization approach based on Gaussian process model

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The design and optimization of engineering products is usually multi-objective, constrained and has uncertainties in the inputs. It is of great importance for taking these uncertainties into consideration during the design process because these uncertainties can significantly degrade the performance of optimal solutions and even change the feasibility of obtained solutions. Most existing Multi-objective robust optimization (MORO) approaches rely on outer-inner nested optimization structures, where a large number of function evaluations is required. In this work, a MORO approach based on Gaussian process (GP) model is proposed to ease the computational burden of MORO under interval uncertainty. To consider the interpolation uncertainty introduced by GP model, an objective switching criterion is developed, which is according to whether the robust status of the individual can be changed because of the interpolation uncertainties from GP model or not. Six numerical and engineering cases with different degrees of difficulty are used to demonstrate the applicability and efficiency of the proposed approach. The objective and feasibility robustness of the obtained optimal solutions are verified via the design of experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Arendt PD, Apley DW, Chen W (2013) Objective-oriented sequential sampling for simulation based robust design considering multiple sources of uncertainty. J Mech Des 135(5):051005

    Article  Google Scholar 

  • Bachoc F (2013) Cross validation and maximum likelihood estimations of hyper-parameters of gaussian processes with model misspecification. Computational Statistics & Data Analysis 66:55–69

    Article  MathSciNet  Google Scholar 

  • Carpinelli G, Caramia P, Varilone P (2015) Multi-linear monte carlo simulation method for probabilistic load flow of distribution systems with wind and photovoltaic generation systems. Renew Energy 76:283–295

    Article  Google Scholar 

  • Chen S, Jiang Z, Yang S, Chen W (2016) Multimodel fusion based sequential optimization. AIAA J 55(1), 241–254

  • Cheng S, Li M (2015) Robust optimization using hybrid differential evolution and sequential quadratic programming. Eng Optim 47(1):87–106

    Article  MathSciNet  Google Scholar 

  • Cheng S, Zhou J, Li M (2015) A new hybrid algorithm for multi-objective robust optimization with interval uncertainty. J Mech Des 137(2):021401

    Article  Google Scholar 

  • Deb K 2014 Multi-objective optimization. Search Methodologies. Springer, pp. 403–449

  • Deb K, Gupta H (2006) Introducing robustness in multi-objective optimization. Evol Comput 14(4):463–494

    Article  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Gabrel V, Murat C, Thiele A (2014) Recent advances in robust optimization: an overview. Eur J Oper Res 235(3):471–483

    Article  MathSciNet  MATH  Google Scholar 

  • Gaspar-Cunha A, Covas JA (2008) Robustness in multi-objective optimization using evolutionary algorithms. Comput Optim Appl 39(1):75–96

    Article  MathSciNet  MATH  Google Scholar 

  • Gunawan S (2004) Parameter sensitivity measures for single objective, multi-objective, and feasibility robust design optimization. PhD diss., University of Maryland, College Park

  • Gunawan S, Azarm S (2005) Multi-objective robust optimization using a sensitivity region concept. Struct Multidiscip Optim 29(1):50–60

    Article  Google Scholar 

  • Hu W (2012) Approximation assisted multiobjective and collaborative robust optimization under interval uncertainty. PhD diss., University of Maryland, College Park

  • Hu W, Li M, Azarm S, Al Hashimi S, Almansoori A, Al-Qasas N (2009). Improving multi-objective robust optimization under interval uncertainty using worst possible point constraint cutsed. In: ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp. 1193–1203

  • Hu W, Li M, Azarm S, Almansoori A (2011) Multi-objective robust optimization under interval uncertainty using online approximation and constraint cuts. J Mech Des 133(6):061002

    Article  Google Scholar 

  • Kim N-K, Kim D-H, Kim D-W, Kim H-G, Lowther D, Sykulski JK (2010) Robust optimization utilizing the second-order design sensitivity information. Magnetics, IEEE Transactions on 46(8):3117–3120

    Article  Google Scholar 

  • Kleijnen JPC (2014) Simulation-optimization via kriging and bootstrapping: a survey. Journal of Simulation 8(4):241–250

    Article  Google Scholar 

  • Kurpati A, Azarm S, Wu J (2002) Constraint handling improvements for multiobjective genetic algorithms. Struct Multidiscip Optim 23(3):204–213

    Article  Google Scholar 

  • Lee K-H, Park G-J (2001) Robust optimization considering tolerances of design variables. Comput Struct 79(1):77–86

    Article  Google Scholar 

  • Li M, Azarm S, Boyars A (2006) A new deterministic approach using sensitivity region measures for multi-objective robust and feasibility robust design optimization. J Mech Des 128(4):874–883

    Article  Google Scholar 

  • Li M, Hamel J, Azarm S (2010) Optimal uncertainty reduction for multi-disciplinary multi-output systems using sensitivity analysis. Struct Multidiscip Optim 40(1–6):77–96

    Article  Google Scholar 

  • Li M, Li G, Azarm S (2008) A kriging metamodel assisted multi-objective genetic algorithm for design optimization. J Mech Des 130(3):031401

    Article  Google Scholar 

  • Li M, Williams N, Azarm S (2009) Interval uncertainty reduction and single-disciplinary sensitivity analysis with multi-objective optimization. J Mech Des 131(3):031007

    Article  Google Scholar 

  • Mckay MD, Beckman RJ, Conover WJ (1979) Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245

    MathSciNet  MATH  Google Scholar 

  • Mortazavi A, Azarm S, Gabriel S (2013) Adaptive gradient-assisted robust design optimization under interval uncertainty. Eng Optim 45(11):1287–1307

    Article  MathSciNet  Google Scholar 

  • Papadimitriou D, Giannakoglou K (2013) Third-order sensitivity analysis for robust aerodynamic design using continuous adjoint. Int J Numer Methods Fluids 71(5):652–670

    Article  MathSciNet  Google Scholar 

  • Pedersen SN, Christensen ME, Howard TJ (2016) Robust design requirements specification: a quantitative method for requirements development using quality loss functions. J Eng Des 27(8):544–567

    Article  Google Scholar 

  • Rasmussen CE (2004). Gaussian processes in machine learning. In: Bousquet O, von Luxburg U, Rätsch G (eds) Advanced lectures on machine learning. Springer, Heidelberg, Berlin, pp 63–71

  • Renaud J (1997) Automatic differentiation in robust optimization. AIAA J 35(6):1072–1079

    Article  MATH  Google Scholar 

  • Schott JR (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization (No. AFIT/CI/CIA-95-039). Air Force Inst of Tech Wright-Patterson AFB OH

  • Song X, Sun G, Li Q (2016) Sensitivity analysis and reliability based design optimization for high-strength steel tailor welded thin-walled structures under crashworthiness. Thin-Walled Struct 109:132–142

    Article  Google Scholar 

  • Sun G, Song X, Baek S, Li Q (2013) Robust optimization of foam-filled thin-walled structure based on sequential kriging metamodel. Struct Multidiscip Optim 49(6):897–913

    Article  Google Scholar 

  • Taguchi G (1978) Performance analysis design. The International Journal of Production Research 16(6):521–530

    Article  Google Scholar 

  • Van Albada SJ, Robinson PA (2007) Transformation of arbitrary distributions to the normal distribution with application to eeg test-retest reliability. J Neurosci Methods 161 (2): 205–11 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17204332

  • Wang Y, Chaib-Draa B (2016) Knn-based kalman filter: an efficient and non-stationary method for gaussian process regression. Knowl-Based Syst 114:148–155

    Article  Google Scholar 

  • Williams CKI, Rasmussen CE (1996) Gaussian processes for regression. In: Touretzky DS, Mozer MC, Hasselmo ME (eds) Adv Neural Inf Proces Syst. Cambridge, MIT Press, 8:514–520

  • Wu J, Azarm S (2001) Metrics for quality assessment of a multiobjective design optimization solution set. J Mech Des 123(1):18–25

    Article  Google Scholar 

  • Xiao M, Gao L, Xiong H, Luo Z (2015) An efficient method for reliability analysis under epistemic uncertainty based on evidence theory and support vector regression. J Eng Des 26(10-12): 340–364

  • Zhang S, Zhu P, Chen W, Arendt P (2012) Concurrent treatment of parametric uncertainty and metamodeling uncertainty in robust design. Struct Multidiscip Optim 47(1):63–76

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Y, Li M, Zhang J, Li G (2016) Robust optimization with parameter and model uncertainties using gaussian processes. J Mech Des 138(11):111405

    Article  Google Scholar 

  • Zhao L, Choi KK, Lee I (2011) Metamodeling method using dynamic kriging for design optimization. AIAA J 49(9):2034–2046

    Article  Google Scholar 

  • Zheng K, Yang R-J, Xu H, Hu J (2016) A new distribution metric for comparing pareto optimal solutions. Struct Multidiscip Optim 55(1):53–62

    Article  MathSciNet  Google Scholar 

  • Zhou Q, Shao X, Jiang P, Gao Z, Wang C, Shu L (2016) An active learning metamodeling approach by sequentially exploiting difference information from variable-fidelity models. Adv Eng Inform 30(3):283–297

    Article  Google Scholar 

  • Zhou Q, Shao XY, Jiang P, Zhou H, Cao LC, Zhang L (2015) A deterministic robust optimisation method under interval uncertainty based on the reverse model. J Eng Des 26(10–12):416–444

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the National Natural Science Foundation of China (NSFC) under Grant No. 51505163, No. 51421062 and No. 51323009, National Basic Research Program (973 Program) of China under grant No. 2014CB046703, and the Fundamental Research Funds for the Central Universities, HUST: Grant No. 2016YXMS272.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Jiang.

Electronic supplementary material

ESM 1

(PDF 7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Jiang, P., Huang, X. et al. A multi-objective robust optimization approach based on Gaussian process model. Struct Multidisc Optim 57, 213–233 (2018). https://doi.org/10.1007/s00158-017-1746-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1746-9

Keywords

Navigation