Skip to main content
Log in

Identifying boundaries of topology optimization results using basic parametric features

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Topology optimization yields an overall layout of a structure in the form of discrete densities or continuous boundaries. One of important drawbacks, however, is that a serious gap exists between the topology results (e.g., greyscale images with irregular shapes) and parameterized CAD models that are ready for subsequent optimization and manufacturing. Without the corresponding CAD model, topology optimization design is difficult to be interpreted for manufacturing, as well as to be utilized in subsequent applications such as section and shape optimization. It is considered the most significant bottleneck to interpret topology optimization results and to produce a parameterized CAD model that can be used for subsequent optimization. The objective of this paper is to extract geometric features out of topology designs for parameterized CAD models with minimal manual intervention. The active contour method is first used to extract boundary segments from topology geometry. Using the information of roundness and curvature of segments, basic geometric features, such as lines, arcs, circles and fillets, are then identified. An optimization method is used to find parameters of these geometric features by minimizing errors between the boundary of geometric features and corresponding segments. Lastly, using the parameterized CAD model, section optimization is performed for beam-like structures, and surrogate-based shape optimization is employed to determine the final shapes. The entire process is automated with MATLAB and Python scripts in Abaqus, while manual intervention is needed only when defining geometric constraints and design parameters. Three examples are presented to demonstrate effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Bendsøe MP, Rodrigues HC (1991) Integrated topology and boundary shape optimization of 2-D Solid. Comput Methods Appl Mech Eng 87(1):15–34

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654

    MATH  Google Scholar 

  • Bouaziz S, Deuss M, Schwartzburg Y, Weise T, Pauly M (2012) Shape-up: shaping discrete geometry with projections. Comput Graph Forum 31(5):1657–1667. doi:10.1111/j.1467-8659.2012.03171.x

    Article  Google Scholar 

  • Brampton CJ, Dunning PD, Kim HA (2015) Topology optimization for stress using level set method. 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee

    Google Scholar 

  • Bremicker M, Chirehdast M, Kikuchi N, Papalambros PY (1991) Integrated topology and shape optimization in structural design. Mech Struct Mach 19(4):551–587

    Article  Google Scholar 

  • Chacón JM, Bellido JC, Donoso A (2014) Integration of topology optimized designs into CAD/CAM via an IGES translator. Struct Multidiscip Optim 50(6):1115–1125. doi:10.1007/s00158-014-1099-6

    Article  Google Scholar 

  • Chan TF, Vese LA (2001) Active contours without edges. IEEE T Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  • Change KH, Tang PS (2001) Integration of design and manufacturing for structural shape optimization. Adv Eng Softw 32(7):555–567

    Article  Google Scholar 

  • Chen S, Chen W (2011) A new level-set based approach to shape and topology optimization under geometric uncertainty. Struct Multidiscip Optim 44(1):1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Chen S, Chen W, Lee S (2010) Level-set based robust shape and topology optimization under random field uncertainties. Struct Multidiscip Optim 41(4):507–524

    Article  MathSciNet  MATH  Google Scholar 

  • Chirehdast M, Gea H-C, Kikuchi N, Papalambros PY (1994) Structural configuration examples of an integrated optimal design process. J Mech Des 116(4):997–1004

    Article  Google Scholar 

  • Christiansen AN, Bærentzen JA, Nobel-Jørgensen M, Aage N, Sigmund O (2015) Combined shape and topology optimization of 3D structures. Comput Graph 46(C):25–35. doi:10.1016/j.cag.2014.09.021

    Article  Google Scholar 

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38

    Article  MathSciNet  Google Scholar 

  • Garrido-Jurado S, Muñoz-Salinas R, Madrid-Cuevas FJ, Marín-Jiménez MJ (2014) Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn 47(6):2280–2292

    Article  Google Scholar 

  • Guest JK (2009) Imposing maximum length scale on topology optimization. Struct Multidiscip Optim 37(5):463–473

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically – a new moving morphable components based framework. J Appl Mech 81(8):1–12

    Article  Google Scholar 

  • He K, Sigal L, Sclaroff S (2014) Parameterizing object detectors in the continuous pose space. Computer Vision – ECCV 2014, Volume 8692 of the series Lecture Notes in Computer Science, 450–465. doi: 10.1007/978-3-319-10593-2_30

  • Hsu MH, Hsu YL (2005) Interpreting three-dimensional structural topology optimization results. Comput Struct 83(4–5):327–337

    Article  Google Scholar 

  • Hsu YL, Hsu MS, Chen CT (2001) Interpreting results from topology optimization using density contours. Comput Struct 79(10):1049–1058

    Article  Google Scholar 

  • Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331

    Article  MATH  Google Scholar 

  • Koguchi A, Kikuchi N (2006) A surface reconstruction algorithm for topology optimization. Eng Comput 22(1):1–10

    Article  Google Scholar 

  • Kumar AV, Gossard DC (1996) Synthesis of optimal shape and topology of structures. J Mech Des 118(1):68–74

    Article  Google Scholar 

  • Larsen SH (2010) Recognizing parametric geometry from topology optimization results. Scholars Archive at Brigham Young University. Retrieved from http://scholarsarchive.byu.edu/etd/2072/

  • Lazarov BS, Wang FW, Sigmund O (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86(1):189–218. doi:10.1007/s00419-015-1106-4

    Article  Google Scholar 

  • Le C, Bruns T, Tortorelli D (2011) A gradient-based, parameter-free approach to shape optimization. Comput Methods Appl Mech Eng 200(9–12):985–996

    Article  MathSciNet  MATH  Google Scholar 

  • Li C, Kao CY, Gore JC, Ding Z (2008) Minimizing of region-scalable fitting energy for image segmentation. IEEE T Image Process 17(10):1940–1949

    Article  Google Scholar 

  • Li C, Kim IY, Jeswiet J (2015) Conceptual and detailed design of an automotive engine cradle by using topology, shape, and size optimization. Struct Multidiscip Optim 51(2):547–564. doi:10.1007/s00158-014-1151-6

    Article  Google Scholar 

  • Lin CY, Chao LS (2000) Automated image interpretation for integrated topology and shape optimization. Struct Multidiscip Optim 20(2):125–137

    Article  Google Scholar 

  • Olhoff N, Bendsøe MP, Rasmussen J (1991) On CAD-integrated structural topology and design optimization. Comput Methods Appl Mech Eng 89(1–3):259–279

    Article  MATH  Google Scholar 

  • Papalambros PY, Chirehdast M (1990) An integrated environment for structural configuration design. J Eng Des 1(1):73–96. doi:10.1080/09544829008901645

    Article  Google Scholar 

  • Pedersen C, Allinger P (2006) Industrial implementation and applications of topology optimization and future needs. In: Bendsøe MP, Olhoff N, Sigmund O: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials: Status and Perspectives, 137 (Part 6), Springer Netherlands, 229–238

  • Rozvany GIN, Lewiński T (2014) Topology optimization in structural and continuum mechanics. CISM International Centre for Mechanical Sciences 549, Springer-Verlag, Wien

    Book  MATH  Google Scholar 

  • Schramm U, Zhou M (2006) Recent developments in the commercial implementation of topology optimization Needs. In: Bendsøe MP, Olhoff N, Sigmund O: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials: Status and Perspectives, 137 (Part 6), Springer Netherlands, 239–248

  • Seo YD, Kim HJ, Youn SK (2010) Shape optimization and its extension to topological design based on isogeometric analysis. Int J Solids Struct 47(11–12):1618–1640

    Article  MATH  Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120–127

    Article  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Su DC (2012) Active contour without edge. On the File Exchange on Matlab Central Website. Retrieved from http://www.mathworks.com/matlabcentral/fileexchange/34548-active-contour-without-edge

  • Suresh K (2013) Efficient generation of large-scale Pareto-optimal topologies.Struct Multidiscip Optim 47(1):49–61

    Article  MathSciNet  MATH  Google Scholar 

  • Sutradhar A, Park J, Carrau D, Nguyen TH, Miller MJ, Paulino GH (2015) Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method. Medical & Biological Engineering & Computing, 1–13. doi: 10.1007/s11517-015-1418-0

  • Tang PS, Change KH (2001) Integration of topology and shape optimization for design of structural components. Struct Multidiscip Optim 22(1):65–82

    Article  Google Scholar 

  • Tompson J, Stein M, Lecun Y, Perlin K (2014) Real-time continuous pose recovery of human hands using convolutional networks. ACM T Graphic 33(5), article No.: 169

  • van Dijk NP, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472

    Article  MathSciNet  Google Scholar 

  • Yi GL (2014) Expanded SIMP method for structural topology optimization by transplanting ICM method. Dissertation, Beijing University of Technology

  • Yi GL, Sui YK (2015) Different effects of economic and structural performance indexes on model construction of structural topology optimization. Acta Mech Sinica 31(5):777–788

    Article  MathSciNet  MATH  Google Scholar 

  • Yildiz AR, Ozturk N, Kaya N, Ozturk F (2003) Integrated optimal topology design and shape optimization using neural networks. Struct Multidiscip Optim 25(4):251–260

    Article  Google Scholar 

  • Youn SK, Park SH (1997) A Study on the shape extraction process in the structural topology optimization using homogenized material. Comput Struct 62(3):527–538

    Article  MathSciNet  MATH  Google Scholar 

  • Zegard T, Paulino GH (2016) Bridging topology optimization and additive manufacturing. Struct Multidiscip Optim 53(1):175–192. doi:10.1007/s00158-015-1274-4

    Article  Google Scholar 

  • Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):197–224

    Google Scholar 

  • Zhou M, Fleury R, Shyy YK, Thomas H, Brennan J (2002) Progress in topology optimization with manufacturing constraints, 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Multidisciplinary Analysis Optimization Conferences, Atlanta. doi:10.2514/6.2002-5614

    Google Scholar 

  • Zhou M, Fleury R, Patten S, Stannard N, Mylett D, Gardner S (2011) Topology optimization-practical aspects for industrial application. Proceeding in the 9th World Congress on Structural and Multidisciplinary Optimization, Shizuoka

    Google Scholar 

  • Zhu JH, Zhang WH, Xia L (2015) Topology optimization in aircraft and aerospace structures design. Arch Comput Meth Eng, 1–28. doi: 10.1007/s11831-015-9151-2

Download references

Acknowledgments

We gratefully acknowledge the financial assistance from the China Scholarship Council (2011–2013) and the Brain Korea 21 Plus project (2015–2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilian Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, G., Kim, N.H. Identifying boundaries of topology optimization results using basic parametric features. Struct Multidisc Optim 55, 1641–1654 (2017). https://doi.org/10.1007/s00158-016-1597-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1597-9

Keywords

Navigation