Skip to main content
Log in

Design of piezoelectric modal filters by simultaneously optimizing the structure layout and the electrode profile

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Modal transducers can be designed by optimizing the polarity of the electrode which covers the piezoelectric layers bonded to the host structure. This paper is intended as a continuation of our previous work (Donoso and Bellido J Appl Mech 57:434–441, 2009a) to make better the performance of such piezoelectric devices by simultaneously optimizing the structure layout and the electrode profile. As the host structure is not longer fixed, the typical drawbacks in eigenproblem optimization such as spurious modes, mode tracking and switching or repeated eigenvalues soon appear. Further, our model has the novel issue that both cost and constraints explicitly depend on mode shapes. Moreover, due to the physics of the problem, the appearance of large gray areas is another pitfall to be solved. Our proposed approach overcomes all these difficulties with success and let obtain nearly 0-1 designs that improve the existing optimal electrode profiles over a homogeneous plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Bathe KJ, Wilson EL (1976) Numerical methods in finite element analysis. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • Carbonari RC, Silva ECN, Nishiwaki S (2007) Optimal placement of piezoelectric material in piezoactuator design. Smart Mater Struct 16:207–220

    Article  Google Scholar 

  • Clarke FH (1990) Optimization and nonsmooth analysis. Classics in Applied Mathematics, SIAM

  • Clark RL, Burke SE (1996) Practical limitations in achieving shaped modal sensors with induced strain materials. J Vib Acoust 118:668–675

    Article  Google Scholar 

  • Cook RD, Malkus DS, Plesha ME (1989) Concepts and applications of finite element analysis, 3rd edn. Wiley, New York

  • Dailey RL (1989) Eigenvector derivatives with repeated eigenvalues. AIAA J 27(4):486–491

    Article  MathSciNet  Google Scholar 

  • Díaz AR, Kikuchi N (1992) Solutions to shape an topology eigenvalue optimization problems using a homogenization method. Int J Numer Meth Engng 35:1487–1502

    Article  MathSciNet  MATH  Google Scholar 

  • Donoso A, Bellido JC (2009a) Systematic design of distributed piezoelectric modal sensors/actuators for rectangular plates by optimizing the polarization profile. Struct Multidisc Optim 38:347–356

    Article  MathSciNet  MATH  Google Scholar 

  • Donoso A, Bellido JC (2009b) Tailoring distributed modal sensors for in-plane modal filtering. Smart Mater Struct 18:037002

  • Donoso A, Bellido JC, Chacón JM (2010) Numerical and analytical method for the design of piezoelectric modal sensors/actuators for shell-type structures. Int J Numer Meth Engng 81:1700– 1712

    MATH  Google Scholar 

  • Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidisc Optim 34:91–110

    Article  MathSciNet  MATH  Google Scholar 

  • Friswell MI (1996) The derivatives of repeated eigenvalues and their associated eigenvectors. Trans ASME J Vib Acoust 118:390–397

    Article  Google Scholar 

  • Guest J, Prevost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Meth Engng 61(2):238– 254

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen LV (2005) Topology optimization of free vibrations of fiber laser packages. Struct Multidisc Optim 29:341–348

    Article  Google Scholar 

  • Jensen JS, Pedersen NL (2006) On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases. J Sound Vib 289:967–986

    Article  Google Scholar 

  • Jian K, Friswell MI (2007) Distributed modal sensors for rectangular plate structures. J Intell Mater Syst Struct 18:939–948

    Article  Google Scholar 

  • Kang Z, Tong L (2011) Combined optimization of bi-material structural layout and voltage distribution for in-plane piezoelectric actuation. Comput Methods Appl Mech Engrg 200:1467– 1478

    Article  MathSciNet  MATH  Google Scholar 

  • Kang Z, Wang X, Luo Z (2012) Topology optimization for static control of piezoelectric plates with penalization on intermediate actuation voltage. J Mech Des 134:051006

    Article  Google Scholar 

  • Kim J, Hwang JS, Kim SJ (2001) Design of modal transducers by optimizing spatial distribution of discrete gain weights. AIAA J 39(10):1969–1976

    Article  Google Scholar 

  • Kim TS, Kim YY (2000) Mac-based mode-tracking in structural topology optimization. Comput Struct 74:375–383

    Article  Google Scholar 

  • Kögl M, Silva ECN (2005) Topology optimization of smart structures: design of piezoelectric plate and shell actuators. Smart Mater Struct 14:387–399

    Article  Google Scholar 

  • Lee IW, Jung GH, Lee JW (1996) Numerical method for sensitivity analysis of eigensystems with non-repeated and repeated eigenvalues. J Sound Vib 195(1):17–32

    Article  MathSciNet  MATH  Google Scholar 

  • Lee CK, Moon FC (1990) Modal sensors/actuators. J Appl Mech 57:434–441

    Article  Google Scholar 

  • Luo Z, Gao W, Song C (2010) Design of multi-phase piezoelectric actuators. J Intell Mater Syst Struct 21:1851–1865

    Article  Google Scholar 

  • Ma ZD, Cheng HC, Kikuchi N (1994) Structural design for obtaining desired eigenfrequencies by using the topology and shape optimization method. Comput Syst Eng 5(1):75–89

    Article  Google Scholar 

  • Maeda Y, Nishiwaki S, Izui I, Yoshimura M, Matsui Tereda K (2006) Structural topology optimization of vibrating structures with specified eigenfrequencies and eigenmode shapes. Int J Numer Meth Engng 67:597–628

    Article  MathSciNet  MATH  Google Scholar 

  • Nakasone PH, Silva ECN (2010) Dynamic design of piezoelectric laminated sensors and actuators using topology optimization. J Intell Mater Syst Struct 21:1627–1652

    Article  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidisc Optim 20:2–11

    Article  Google Scholar 

  • Preumont A, Francois A, De Man P, Piefort V (2003) Spatial filters in structural control. J Sound Vib 265(1):61–79

    Article  MathSciNet  MATH  Google Scholar 

  • Pulskamp JS, Bedair SS, Polcawich RG, Smith GL, Martin J, Power B, Bhave SA (2012) Electrode-shaping for the excitation and detection of permitted arbitrary modes in arbitrary geometries in piezoelectric resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 59(5):1043– 1060

    Article  Google Scholar 

  • Ruiz D, Bellido JC, Donoso A, JL Sánchez-Rojas (2013) Design of in-plane piezoelectric sensors for static response by simultaneously optimizing the host structure and the electrode profile. Struct Multidisc Optim 48:1023–1026

    Article  Google Scholar 

  • Sánchez-Rojas JL, Hernando J, Donoso A, Bellido JC, Manzaneque T, Ababneh A, Seidel H, Schmid U (2010) Modal optimization and filtering in piezoelectric microplate resonators. J Micromech Microeng 20:055027

    Article  Google Scholar 

  • Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Multidisc Optim 8:207–227

    Article  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4–5):401–424

    Article  Google Scholar 

  • Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidisc Optim 22:116–124

    Article  Google Scholar 

  • Sun D, Tong L, Wang D (2002) Modal actuator/sensor by modulating thickness of piezoelectric layers for smart plates. AIAA J 40(8):1676–1679

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Tsai TD, Cheng CC (2013) Structural design for desired eigenfrequencies and mode shapes using topology optimization. Struct Multidisc Optim 47(5):673–686

    Article  MathSciNet  MATH  Google Scholar 

  • Tcherniak D (2002) Topology optimization of resonating structures using SIMP method. Int J Numer Meth Engng 54:1605–1622

    Article  MATH  Google Scholar 

  • Wein F, Kaltenbacher M, Kaltenbacher B, Leugering G, Bänsch E, Schury F (2011) On the effect of self-penalization of piezoelectric composites in topology optimization. Struct Multidisc Optim 43:405–417

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang X, Kang Z, Li M (2014) Topology optimization of electrode coverage of piezoelectric thin-walled structures with CGVF control for minimizing sound radiation. Struct Multidisc Optim 50:799–814

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministerio de Economía y Competitividad (Spain) through grant MTM2013-47053-P, and Consejería de Educación, Cultura y Deportes of the Junta de Comunidades de Castilla-La Mancha (Spain) and the European Fund for Regional Development through grant PEII-2014-010-P. We would like to thank J.L. Sánchez-Rojas for several discussions on the model subject of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Donoso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz, D., Bellido, J.C. & Donoso, A. Design of piezoelectric modal filters by simultaneously optimizing the structure layout and the electrode profile. Struct Multidisc Optim 53, 715–730 (2016). https://doi.org/10.1007/s00158-015-1354-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1354-5

Keywords

Navigation