Skip to main content
Log in

A parallel aerostructural optimization framework for aircraft design studies

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Preliminary aircraft design studies use structural weight models that are calibrated with data from existing aircraft. Computing weights with these models is a fast procedure that provides reliable weight estimates when the candidate designs lie within the domain of the data used for calibration. However, this limitation is too restrictive when we wish to assess the relative benefits of new structural technologies and new aircraft configurations early in the design process. To address this limitation, we present a computationally efficient aerostructural design framework for initial aircraft design studies that uses a full finite-element model of key structural components to better assess the potential benefits of new technologies. We use a three-dimensional panel method to predict the aerodynamic forces and couple the lifting surface deflections to compute the deformed aerodynamic flying shape. To be used early in the design cycle, the aerostructural computations must be fast, robust, and allow for significant design flexibility. To address these requirements, we develop a geometry parametrization technique that enables large geometric modifications, we implement a parallel Newton–Krylov approach that is robust and computationally efficient to solve the aeroelastic system, and we develop an adjoint-based derivative evaluation method to compute the derivatives of functions of interest for design optimization. To demonstrate the capabilities of the framework, we present a design optimization of a large transport aircraft wing that includes a detailed structural design parametrization. The results demonstrate that the proposed framework can be used to make detailed structural design decisions to meet overall aircraft mission requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Akgun MA, Haftka RT, Wu KC, Walsh JL, Garcelon JH (2001) Efficient structural optimization for multiple load cases using adjoint sensitivities. AIAA J 39(3):511–516. doi:10.2514/2.1336

    Article  Google Scholar 

  • Balay S, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H (2004) PETSc users manual. Technical Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory

  • Balay S, Gropp WD, McInnes LC, Smith BF (1997) Efficient management of parallelism in object oriented numerical software libraries. In: Arge E, Bruaset A M, Langtangen H P (eds) Modern Software Tools in Scientific Computing. Birkhäuser Press, pp 163– 202

  • Barcelos M, Bavestrello H, Maute K (2006) A Schur-Newton-Krylov solver for steady-state aeroelastic analysis and design sensitivity analysis. Comput Methods Appl Mech Eng 195(17-18):2050–2069. doi:10.1016/j.cma.2004.09.013

    Article  MATH  Google Scholar 

  • Barcelos M, Maute K (2008) Aeroelastic design optimization for laminar and turbulent flows. Comput Methods Appl Mech Eng 197(19-20):1813–1832. doi:10.1016/j.cma.2007.03.009

    Article  MATH  Google Scholar 

  • Brown S A (1997) Displacement extrapolation for CFD+CSM aeroelastic analysis. AIAA Paper: 97–1090

  • Bucalem ML, Bathe K-J (1993) Higher-order MITC general shell elements. Int J Numer Methods Eng 36:3729–3754. doi:10.1002/nme.1620362109

    Article  MATH  MathSciNet  Google Scholar 

  • Eisenstat S, Walker H (1996) Choosing the forcing terms in an inexact newton method. SIAM J Sci Comput 17(1):16–32. doi:10.1137/0917003

    Article  MATH  MathSciNet  Google Scholar 

  • Erickson LL (1990) Panel methods:An introduction. Technical Report NASA TP-2995, NASA Ames Research Center. Moffett Field, California

    Google Scholar 

  • Farhat C, Lesoinne M, Tallec PL (1998) Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces:Momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput Methods Appl Mech Eng 157(1–2):95–114. doi:10.1016/S0045-7825(97)00216-8

    Article  MATH  Google Scholar 

  • Gill PE, Murray W, MA Saunders. (2005) SNOPT:An SQP algorithm for large-scale constrained optimization. SIAM Rev 47(1):99–131. doi:10.1137/S0036144504446096

    Article  MATH  MathSciNet  Google Scholar 

  • Grossman B, Gurdal Z, Haftka RT, Strauch GJ, Eppard WM (1988) Integrated aerodynamic/structural design of a sailplane wing. J Aircr 25(9):855–860. doi:10.2514/3.45980. 2013/09/28

    Article  Google Scholar 

  • Grossman B, Haftka RT, Sobieszczanski-Sobieski J, Kao PJ, Polen DM, Rais-Rohani M (1990) Integrated aerodynamic-structural design of a transport wing. J Aircr 27(12):1050–1056. doi:10.2514/3.45980

    Article  Google Scholar 

  • Haftka RT (1977) Optimization of flexible wing structures subject to strength and induced drag constraints. AIAA J 15(8):1101–1106. doi:10.2514/3.7400

    Article  Google Scholar 

  • Hajela P, Chen JL (1988) Preliminary weight estimation of conventional and joined wings using equivalent beam models. J Aircr 25(6):574–576. doi:10.2514/3.45625

    Article  Google Scholar 

  • Hess J, Smith A (1967) Calculation of potential flow about arbitrary bodies. Prog Aerosp Sci 8:1–138

    Article  MATH  Google Scholar 

  • Hughes PC (2004) Spacecraft attitude dynamics. Dover books on engineering. Dover Publications

  • Jansen P, Perez R (2011) Constrained structural design optimization via a parallel augmented Lagrangian particle swarm optimization approach. Comput Struct 89(14):1352–1366. doi:10.1016/j.compstruc.2011.03.011

    Article  Google Scholar 

  • Jansen P, Perez RE, Martins JRRA (2010) Aerostructural optimization of nonplanar lifting surfaces. J Aircr 47(5):1491–1503. doi:10.2514/1.44727

    Article  Google Scholar 

  • Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–392

    Article  MathSciNet  Google Scholar 

  • Katz J, Plotkin A (1991) Low–Speed Aerodynamics. McGraw–Hill Inc.

  • Kelley CT, Keyes DE (1997) Convergence analysis of pseudo-transient continuation. SIAM J Num Anal 35:508–523

    Article  MathSciNet  Google Scholar 

  • Kennedy GJ, Kenway GKW, Martins JRRA (2014) High aspect ratio wing design: Optimal aerostructural tradeoffs for the next generation of materials. In 52nd Aerospace Sciences Meeting, National Harbor, Maryland. AIAA 2014-0596

  • Kennedy GJ, Martins JRRA (2012) A comparison of metallic and composite aircraft wings using aerostructural design optimization. In 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Indianapolis, IN

  • Kennedy GJ, Martins JRRA (2014) A parallel finite element framework for large-scale gradient-based design optimization of high-performance structures. Finite Elem Anal Des. doi:10.1016/j.finel.2014.04.011. In press

  • Kenway GKW, Kennedy GJ, Martins JRRA (2014) A scalable parallel approach for high-fidelity steady-state aeroelastic analysis and adjoint derivative computations. AIAA Journal 52(5):935–951. doi:10.2514/1.J052255

  • Kenway GKW, Martins JRRA (2014) Multi-point high-fidelity aerostructural optimization of a transport aircraft configuration. J Aircr 51(1):144–160. doi:10.2514/1.C032150

    Article  Google Scholar 

  • Knoll D, Keyes D (2004) Jacobian-free Newton–Krylov methods:a survey of approaches and applications. J Comput Phys 193(2):357–397. doi:10.1016/j.jcp.2003.08.010

    Article  MATH  MathSciNet  Google Scholar 

  • Kroo I (2013) Aircraft design:Synthesis and analysis. http://adg.stanford.edu/aa241/AircraftDesign.html

  • Liem RP, Kenway GKW, Martins JRRA (2014) Multi-mission aircraft fuel burn minimization via multi-point aerostructural optimization. AIAA J. (Accepted)

  • Mader CA, Martins JRRA, Alonso JJ, van der Weide E (2008) ADjoint:An approach for the rapid development of discrete adjoint solvers. AIAA J 46(4):863–873. doi:10.2514/1.29123

    Article  Google Scholar 

  • Maman N, Farhat C (1995) Matching fluid and structure meshes for aeroelastic computations:A parallel approach. Comput Struct 54(4):779–785. doi:10.1016/0045-7949(94)00359-B

    Article  Google Scholar 

  • Martins JRRA, Alonso JJ, Reuther JJ (2001) Aero-structural wing design optimization using high-fidelity sensitivity analysis. In Proceedings of the CEAS Conference on Multidisciplinary Aircraft Design and Optimization

  • Martins JRRA, Alonso JJ, Reuther JJ (2004) High-fidelity aerostructural design optimization of a supersonic business jet. J Aircr 41(3):523–530. doi:10.2514/1.11478

    Article  Google Scholar 

  • Martins JRRA, Alonso JJ, Reuther JJ (2005) A coupled–adjoint sensitivity analysis method for high–fidelity aero–structural design. Optim Eng 6:33–62. doi:10.1023/B:OPTE.0000048536.47956.62

    Article  MATH  Google Scholar 

  • Martins JRRA, Hwang JT (2013) Review and unification of methods for computing derivatives of multidisciplinary computational models. AIAA J 51(11):2582–2599. doi:10.2514/1.J052184

    Article  Google Scholar 

  • Martins JRRA, Sturdza P, Alonso JJ (2003) The complex-step derivative approximationx. AIAA J 29(3):245–262. doi:10.1145/838250.838251

    MATH  MathSciNet  Google Scholar 

  • Maute K, Nikbay M, Farhat C (2001) Coupled analytical sensitivity analysis and optimization of three-dimensional nonlinear aeroelastic systems. AIAA J 39(11):2051–2061. doi:10.2514/2.1227

    Article  Google Scholar 

  • Maute K, Nikbay M, Farhat C (2003) Sensitivity analysis and design optimization of three-dimensional non-linear aeroelastic systems by the adjoint method. Int J Numer Methods Eng 56(6):911–933. doi:10.1002/nme.599

    Article  MATH  Google Scholar 

  • Ning SA, Kroo I (2010) Multidisciplinary considerations in the design of wings and wing tip devices. J Aircr 47(2):534–543. doi:10.2514/1.41833

    Article  Google Scholar 

  • Perez RE, Jansen PW, Martins JRRA (2012) pyOpt:a Python-based object-oriented framework for nonlinear constrained optimization. Struct Multidiscip Optim 45(1):101–118. doi:10.1007/s00158-011-0666-3

    Article  MATH  MathSciNet  Google Scholar 

  • Poon N, Martins JRRA (2007) An adaptive approach to constraint aggregation using adjoint sensitivity analysis. Struct Multidiscip Optim 34:61–73. doi:10.1007/s00158-006-0061-7

    Article  Google Scholar 

  • Saad Y (1993) A fexible inner-outer preconditioned GMRES algorithm. SIAM J Sci Comput 14(2):461–469. doi:10.1137/0914028

    Article  MATH  MathSciNet  Google Scholar 

  • Saad Y (2003) Iterative Methods for Sparse Linear Systems. PWS Pub. Co. 2nd edn

  • Saad Y, Schultz MH (1986) GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(3):856–869. doi:10.1137/0907058

    Article  MATH  MathSciNet  Google Scholar 

  • Sederberg TW, Parry SR (1986) Free-form deformation of solid geometric models. SIGGRAPH Comput Graph 20(4):151–160. acm.org/10.1145/15886.15903

    Article  Google Scholar 

  • Shevell RS (1989) Fundamentals of Flight. Prentice Hall PTR

  • Smith MJ, Hodges DH, Cesnik CES (2000) Evaluation of computational algorithms suitable for fluid-structure interactions. J Aircr 37(2):282–294. doi:10.2514/2.2592

    Article  Google Scholar 

  • Smith S (1996) A computational and experimental study of nonlinear aspects of induced drag. Tech. Rep. NASA TP 3598, National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA

  • Squire W, Trapp G (1998) Using complex variables to estimate derivatives of real functions. SIAM Rev 40(1):110–112. doi:10.1137/S003614459631241X

    Article  MATH  MathSciNet  Google Scholar 

  • Stroud WJ, Agranoff N (1976) Minimum mass design of filamentary composite panels under combined loads. Design procedure based on simplified buckling equations. Technical report, NASA Langley Research Center, Hampton, VA

  • van der Weide E, Kalitzin G, Schluter J, Alonso JJ (2006) Unsteady turbomachinery computations using massively parallel platforms. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV. AIAA 2006-0421

  • Vassberg J, DeHaan M, Rivers S, Wahls R (2008) Development of a common research model for applied CFD validation studies. AIAA 2008-6919

  • Vassberg JC (2011) A unified baseline grid about the Common Research Model wing-body for the fifth AIAA CFD drag prediction workshop. In 29th Applied Aerodynamics Conference, Honolulu, Hawaii. AIAA 2011-3508

  • Wakayama S, Kroo I (1995) Subsonic wing planform design using multidisciplinary optimization 32(4):746–753. doi:10.2514/3.46786

Download references

Acknowledgments

This work was partially funded by NASA under grant number NNX11AI19A. The authors would like to acknowledge Gaetan Kenway for his assistance with the verification cases presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme J. Kennedy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, G.J., Martins, J.R.R.A. A parallel aerostructural optimization framework for aircraft design studies. Struct Multidisc Optim 50, 1079–1101 (2014). https://doi.org/10.1007/s00158-014-1108-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1108-9

Keywords

Navigation