Skip to main content
Log in

Analysis of Two-Dimensional Non-Rigid Shapes

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Analysis of deformable two-dimensional shapes is an important problem, encountered in numerous pattern recognition, computer vision and computer graphics applications. In this paper, we address three major problems in the analysis of non-rigid shapes: similarity, partial similarity, and correspondence. We present an axiomatic construction of similarity criteria for deformation-invariant shape comparison, based on intrinsic geometric properties of the shapes, and show that such criteria are related to the Gromov-Hausdorff distance. Next, we extend the problem of similarity computation to shapes which have similar parts but are dissimilar when considered as a whole, and present a construction of set-valued distances, based on the notion of Pareto optimality. Finally, we show that the correspondence between non-rigid shapes can be obtained as a byproduct of the non-rigid similarity problem. As a numerical framework, we use the generalized multidimensional scaling (GMDS) method, which is the numerical core of the three problems addressed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bajcsy, R., & Solina, F. (1987) Three dimensional object representation revisited. In Proceedings of ICCV (pp. 231–240).

  • Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape context. IEEE Transactions on PAMI, 24, 509–522.

    Google Scholar 

  • Berg, A.C., Berg, T. L., & Malik, J. (2005). Shape matching and object recognition using low distortion correspondences. In Proceedings of CVPR.

  • Biderman, I. (1985). Human image understanding: recent research and a theory. Computer Graphics, Vision and Image Processing, 32, 29–73.

    Article  Google Scholar 

  • Binford, T. O. (1987). Visual perception by computer. In Proceedings of IEEE conference on systems and control (pp. 231–240).

  • Black, M. J., & Anandan, P. (1993). A framework for the robust estimation of optical flow. In Proceedings of ICCV (pp. 231–236).

  • Borg, I., & Groenen, P. (1997). Modern multidimensional scaling—theory and applications. Berlin: Springer.

    MATH  Google Scholar 

  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2003). Expression-invariant 3D face recognition. In Lecture notes on computer science : Vol. 2688. Proceedings of audio and video-based biometric person authentication (pp. 62–69). Berlin: Springer.

    Chapter  Google Scholar 

  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2005a). Three-dimensional face recognition. International Journal of Computer Vision, 64(1), 5–30.

    Article  Google Scholar 

  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2005b). Expression-invariant face recognition via spherical embedding. In Proceedings of IEEE international conference on image processing (ICIP) (Vol. 3, pp. 756–759).

  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2005c). On isometric embedding of facial surfaces into \(\mathbb{S}^{3}\) . In Lecture notes on computer science : Vol. 3459. Proceedings of international conference on scale space and PDE methods in computer vision. (pp. 622–631). Berlin: Springer.

    Google Scholar 

  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2006a). Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proceedings of the National Academy of Sciences, 103(5), 1168–1172.

    Article  MathSciNet  MATH  Google Scholar 

  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2006b). Efficient computation of isometry-invariant distances between surfaces, SIAM Journal of Scientific Computing. 28(5), 1812–1836.

    Article  MATH  MathSciNet  Google Scholar 

  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2006c). Robust expression-invariant face recognition from partially missing data. In Proceedings of European conference on computer vision (ECCV) (pp. 396–408).

  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2006d). Face2face: an isometric model for facial animation. In Proceedings of conference on articulated motion and deformable objects (AMDO) (pp. 38–47).

  • Bronstein, M. M., Bronstein, A. M., Kimmel, R., & Yavneh, I. (2006e). Multigrid multidimensional scaling. Numerical Linear Algebra with Applications (NLAA), 13, 149–171.

    Article  MathSciNet  MATH  Google Scholar 

  • Bronstein, A. M., Bronstein, M. M., Bruckstein, A. M., & Kimmel, R. (2006f). Matching two-dimensional articulated shapes using generalized multidimensional scaling. In Proceedings of conference on articulated motion and deformable objects (AMDO) (pp. 48–57).

  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2007a). Calculus of non-rigid surfaces for geometry and texture manipulation. IEEE Transactions on Visualization and Computer Graphics, 13(5), 902–913.

    Google Scholar 

  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2007b). Numerical geometry of non-rigid shapes. Berlin: Springer.

    Google Scholar 

  • Bronstein, A. M., Bronstein, M. M., Devir, Y. S., Kimmel, R., & Weber, O. (2007c). Parallel algorithms for approximation of distance maps on parametric surfaces. (Technical Report CIS-2007-03). Department of Computer Science, Technion, Israel, April 2007. ACM Transactions on Graphics (in press).

  • Brooks, R. (1981). Symbolic reasoning among 3-D models and 2-D images. Artificial Intelligence, 17, 285–348.

    Article  Google Scholar 

  • Bruckstein, A. M., Holt, R. J., & Netravali, A. N. (1998). Holographic representations of images. IEEE Transactions on Image Processing, 7(11), 1583–1597.

    Article  Google Scholar 

  • Burago, D., Burago, Y., & Ivanov, S. (2001). A course in metric geometry. In Graduate studies in mathematics, (Vol. 33). Providence: American Mathematical Society.

    Google Scholar 

  • Burr, D. (1981). Elastic matching of line drawings. IEEE Transactions on PAMI, 3(6), 708–713.

    Google Scholar 

  • Charpiat, G., Maurel, P., Pons, J. P., Keriven, R., & Faugeras, O. (2007). Generalized gradients: priors on minimization flows. International Journal of Computer Vision, 73(3), 325–344.

    Article  Google Scholar 

  • Cheng, S. W., Edelsbrunner, H., Fu, P., & Lam, K. P. (2001). Design and analysis of planar shape deformation. Computational Geometry: Theory and Applications, 19(2–3), 205–218.

    MATH  MathSciNet  Google Scholar 

  • Cohen, I., Ayache, N., & Sulger, P. (1992). Tracking points on deformable objects using curvature information. In Proceedings of ECCV (pp. 458–466).

  • Connell, J. H., & Brady, M. (1987). Generating and generalizing models of visual objects. Artificial Intelligence, 31, 159–183.

    Article  Google Scholar 

  • de Rooij, S., & Vitanyi, P. (2006). Approximating rate-distortion graphs of individual data: Experiments in lossy compression and denoising. IEEE Transactions on Information Theory (submitted).

  • Elad, A., & Kimmel, R. (2001). Bending invariant representations for surfaces. In Proceedings of CVPR (pp. 168–174).

  • Elad, A., & Kimmel, R. (2002). Spherical flattening of the cortex surface. In Lecture notes in computer Science : Vol. 2191. Geometric methods in bio-medical image processing (pp. 77–89). Berlin: Springer.

    Google Scholar 

  • Eldar, Y., Lindenbaum, M., Porat, M., & Zeevi, Y. Y. (1997). The farthest point strategy for progressive image sampling. IEEE Transactions on Image Processing, 6(9), 1305–1315.

    Article  Google Scholar 

  • Everson, R. M., & Fieldsend, J. E. (2006). Multi-class ROC analysis from a multi-objective optimization perspective. Pattern Recognition Letters, 27(8), 918–927.

    Article  Google Scholar 

  • Felzenszwalb, P. F. (2005). Representation and detection of deformable shapes. IEEE Transactions on PAMI, 27(2), 208–220.

    Google Scholar 

  • Felzenszwalb, P. F., & Huttenlocher, D. P. (2005). Pictorial structures for object recognition. International Journal of Computer Vision, 61(1), 55–79.

    Article  Google Scholar 

  • Felzenszwalb, P. F., & Schwartz, J. (2007). Hierarchical matching of deformable shapes. In Proceedings of CVPR.

  • Fischler, M. A., & Elschlager, R. A. (1973). The representation and matching of pictorial structures. IEEE Transactions on Computers, 100(22), 67–92.

    Article  Google Scholar 

  • Forsyth, D. A., & Ponce, J. (2003). Computer vision: A modern approach. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Gdalyahu, Y., & Weinshall, D. (1999). Flexible syntactic matching of curves and its application to automatic hierarchical classification of silhouettes. IEEE Transactions on PAMI, 21, 1312–1328.

    Google Scholar 

  • Geiger, D., Liu, T. L., & Kohn, R. (2003). Representation and self-similarity of shapes. IEEE Transactions on PAMI, 25(1), 86–99.

    Google Scholar 

  • Gelfand, N., Mitra, N. J., Guibas, L., & Pottmann, H. (2005). Robust global registration. In Proceedings of symposium on geometry processing (SGP).

  • Grenander, U., Chow, Y., & Keenan, D. M. (1991). Hands: A pattern theoretic study of biological shapes. Berlin: Springer.

    Google Scholar 

  • Gromov, M. (1981). Textes mathématiques: Vol. 1. Structures métriques pour les variétés riemanniennes.

  • Jacobs, D., & Ling, H. (2005). Deformation invariant image matching. In Proceedings of ICCV.

  • Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (1986). Robust statistics: The approach based on influence functions. New York

  • Hel-Or, Y., & Werman, M. (1994). Constraint-fusion for interpretation of articulated objects. In Proceedings of CVPR (pp. 39–45).

  • Hildreth, E. (1983). The measurement of visual motion. Cambridge: MIT Press.

    Google Scholar 

  • Hoffman, D., & Richards, W. (1984). Visual cognition. In Parts of recognition. Cambridge: MIT Press.

    Google Scholar 

  • Huber, P. J. (2004). Robust statistics. New York: Wiley.

    Google Scholar 

  • Jacobs, D., Weinshall, D., & Gdalyahu, Y. (2000). Class representation and image retrieval with non-metric distances. IEEE Transactions on PAMI, 22, 583–600.

    Google Scholar 

  • Jain, A., Zhong, Y., & Lakshmanan, S. (1996). Object matching using deformable templates. IEEE Transactions on PAMI, 3(18), 267–278.

    Google Scholar 

  • Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: active contour models. International Journal of Computer Vision, 1(4), 321–331.

    Article  Google Scholar 

  • Kimmel, R., & Sethian, J. A. (1998). Computing geodesic on manifolds. In Proceedings of US National Academy of Science (Vol. 95, pp. 8431–8435).

  • Klir, G. J., & Yuan, B. (1994). Fuzzy sets and fuzzy logic: theory and applications. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Koenderink, J. J., & van Doorn, A. J. (1981). The shape of smooth objects and the way contours end. Perception, 11, 129–137.

    Article  Google Scholar 

  • Kupeev, K., & Wolfson, H. (1994). On shape similarity. In Proceedings of international conference on pattern recognition (pp. 227–237).

  • Lades, M., Vorbruggen, J. C., Buhmann, J., Lange, J., von der Malsburg, C., Wurtz, R. P., & Konen, W. (1993). Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers, 42(3), 300–311.

    Article  Google Scholar 

  • Latecki, L. J., & Lakamper, R. (2000). Shape similarity measure based on correspondence of visual parts. IEEE Transactions on PAMI, 22(10), 1185–1190.

    Google Scholar 

  • Latecki, L. J., Lakamper, R., & Wolter, D. (2005). Optimal partial shape similarity. Image and Vision Computing, 23, 227–236.

    Article  Google Scholar 

  • Ling, H., & Jacobs, D. (2005). Using the inner-distance for classification of articulated shapes. In: Proceedings of CVPR.

  • Mémoli, F., & Sapiro, G. (2005). A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics, 5(3), 313–347.

    Article  MATH  MathSciNet  Google Scholar 

  • Michor, P. W., & Mumford, D. (2003). Riemannian geometries on spaces of plane curves. Arxiv preprint math.DG/0312384.

  • Mio, W., Srivastava, A., & Joshi, S. (2007). On shape of plane elastic curves. International Journal of Computer Vision, 73(3), 307–324.

    Article  Google Scholar 

  • Mumford, D. (1991). Mathematical theories of shape: do they model perception? In Proceedings of SPIE (pp. 2–10).

  • Pareto, V. (1906). Manuale di economia politica.

  • Pentland, A. (1987). Recognition by parts. In Proceedings of ICCV (pp. 612–620).

  • Platel, B., Balmachnova, E., Florack, L. M. J., Kanters, F. M. W., & ter Haar Romeny, B. M. (2005). Using top-points as interest points for image matchng. In Lecture notes in computer science (Vol. 3753, p. 211).

  • Geiger, D., Basri, R., Costa, L., & Jacobs, D. (1998). Determining the similarity of deformable shapes. Vision Research, 38, 2365–2385.

    Article  Google Scholar 

  • Rivlin, E., Dickenson, S., & Rosenfeld, A. (1992). Recognition by functional parts. In Proceedings of CVPR (pp. 267–275).

  • Salukwadze, M. E. (1979). Vector-valued optimization problems in control theory. Orlando: Academic Press.

    Google Scholar 

  • Sethian, J. A. (1996). A review of the theory, algorithms, and applications of level set method for propagating surfaces. Acta numerica 309–395.

  • Siddiqi, K., & Kimia, B. (1996). A shock grammar for recognition. In Proceedings of CVPR (pp. 507–513).

  • Spira, A., & Kimmel, R. (2004). An efficient solution to the eikonal equation on parametric manifolds (Vol. 6, pp. 315–327).

  • Stark, L., & Bowyer, K. (1991). Achieving generalized object recognition through reasoning about association of function to structure. IEEE Transactions on PAMI, 10(13), 992–1006.

    Google Scholar 

  • Tappert, C. (1982). Cursive script recognition by elastic matching. IBM Journal of Research and Development, 26(6), 765–771.

    Article  Google Scholar 

  • Ullman, S. (1989). Aligning pictorial descriptions: an approach to object recognition. Cognition, 3(32), 193–254.

    Article  MathSciNet  Google Scholar 

  • Walter, J., & Ritter, H. (2002). On interactive visualization of high-dimensional data using the hyperbolic plane. In Proceedings of ACM SIGKDD int. conference on knowledge discovery and data mining (pp. 123–131).

  • Yezzi, A., & Mennucci, A. (2004). Metrics in the space of curves. Arxiv preprint math.DG/0412454.

  • Yuille, A., Cohen, D., & Hallinan, P. (1989). Feature extraction from faces using deformable templates. In Proceedings of CVPR (pp. 104–109).

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Article  MATH  MathSciNet  Google Scholar 

  • Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1(1), 3–28.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, J., Collins, R., & Liu, Y. (2004). Representation and matching of articulated shapes. In Proceedings of CVPR (Vol. 2, pp. 342–349).

  • Zimmermann, H. J. (2001). Fuzzy set theory and its applications. Dordrecht: Kluwer Academic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Bronstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronstein, A.M., Bronstein, M.M., Bruckstein, A.M. et al. Analysis of Two-Dimensional Non-Rigid Shapes. Int J Comput Vis 78, 67–88 (2008). https://doi.org/10.1007/s11263-007-0078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-007-0078-4

Keywords

Navigation