Skip to main content
Log in

Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile, contains hundreds of millions of tonnes (Mt) of mineable iron oxide and copper sulfide ore. While there is an agreement that mineralization at Mantoverde was caused by hydrothermal fluid(s), there is a lack of consensus for the role(s) that non-magmatic vs. magmatic fluid(s) played during the evolution of the mineralized system. In order to overcome the hydrothermal overprint at Mantoverde, which is known to disturb most conventional stable isotope systems (e.g., oxygen), we report the first δ56Fe and δ18O pairs for early-stage magnetite and late-stage hematite that provide information on the source reservoir of the hydrothermal fluids. Magnetite δ56Fe values range from 0.46 ± 0.04 to 0.58 ± 0.02‰ and average 0.51 ± 0.16‰ (n = 10; 2σ). Three hematite δ56Fe values were measured to be 0.34 ± 0.10, 0.42 ± 0.09, and 0.46 ± 0.06. Magnetite δ18O values range from 0.69 ± 0.04 to 4.61 ± 0.05‰ and average 2.99 ± 2.70‰ (n = 9; 2σ). Hematite δ18O values range from − 1.36 ± 0.05 to 5.57 ± 0.05‰ and average 0.10 ± 5.38‰ (n = 6; 2σ). These new δ56Fe and δ18O values fingerprint a magmatic-hydrothermal fluid as the predominant ore-forming fluid responsible for mineralization in the Mantoverde system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anbar AD (2004) Iron stable isotopes: beyond biosignatures. Earth Planet Sci Lett 217:223–236

    Google Scholar 

  • Barra F, Reich M, Rojas P, Selby D, Simon AC, Salazar E, Palma G (2017) Unraveling the origin of the Andean IOCG Clan: a Re-Os isotope approach. Ore Geol Rev 81:62–78

    Google Scholar 

  • Barton MD (2014) Iron oxide (–Cu–Au–REE–P–Ag–U–Co) systems. In: Scott SD (ed) Geochemistry of mineral deposits. Treatise on Geochemistry, vol 13, 2nd edn. Elsevier, Amsterdam, pp 515–541

    Google Scholar 

  • Barton MD, Johnson DA (1996) Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology 26:259–262

    Google Scholar 

  • Benavides J, Kyser TK, Clark AH, Oates CJ, Zamora R, Tarnovschi R, Castillo B (2007) The Mantoverde iron oxide-copper-gold district, III Región, Chile: the role of regionally derived, non-magmatic fluids in chalcopyrite mineralization. Econ Geol 102:415–440

    Google Scholar 

  • Benavides J, Kyser TK, Clark AH, Stanley C, Oates CJ (2008) Exploration guidelines for copper-rich iron oxide–copper–gold deposits in the Mantoverde area, northern Chile: the integration of host-rock molar element ratios and oxygen isotope compositions. Geochem Explor Environ Anal 8:343–367

    Google Scholar 

  • Bilenker LD, Simon AC, Reich M, Lundstrom CC, Gajos N, Bindeman I, Barra R, Munizaga R (2016) Fe-O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits. Geochim Cosmochim Acta 177:94–104

    Google Scholar 

  • Bilenker LD, VanTongeren JA, Lundstrom CC, Simon AC (2017) Iron isotopic evolution during fractional crystallization of the uppermost Bushveld Complex layered mafic intrusion. Geochemistry Geophysics Geosystems 18. https://doi.org/10.1002/2016GC006660.

  • Blanchard M, Poitrasson F, Méheut M, Lazzeri M, Mauri F, Balan E (2009) Iron isotope fractionation between pyrite (FeS2), hematite (Fe2O3) and siderite (FeCO3): a first-principles density functional theory study. Geochim Cosmochim Acta 73:6565–6578

    Google Scholar 

  • Childress TM, Simon AC, Day WC, Lundstrom CC, Bindeman IN (2016) Iron and oxygen isotope signatures of the Pea Ridge and Pilot Knob magnetite-apatite deposits, Southeast Missouri, USA. Econ Geol 111:2033–2044

    Google Scholar 

  • Chou IM, Eugster HP (1977) Solubility of magnetite in supercritical chloride solutions. Am J Sci 277:1296–1314

    Google Scholar 

  • Cole DR, Horita J, Polyakov VB, Valley JW, Spicuzza MJ, Coffey DW (2004) An experimental and theoretical determination of oxygen isotope fractionation in the system magnetite-H2O from 300 to 800 °C. Geochim Cosmochim Acta 68:3569–3585

    Google Scholar 

  • Cornejo P, Matthews S, Orrego M, Robles W (2000) Etapas de mineralización asociadas a alteración potásica en un sistema Fe-Cu-Au: Yacimiento Mantoverde, III Región de Atacama, Chile: IX Congreso Geológico Chileno, Puerto Varas, Actas, pp 97–101.

  • Craddock PR, Dauphas N (2011) Iron isotopic compositions of geological reference materials and chondrites. Geostand Geoanal Res 35:101–123

    Google Scholar 

  • Dare SAS, Barnes S-J, Beaudoin G (2014) Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-M. Mineral Deposita 50:607–617

    Google Scholar 

  • Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineral Deposita 46:319–335

    Google Scholar 

  • Fisher LA, Kendrick MA (2008) Metamorphic fluid origins in the Osborne Fe oxide-Cu-Au deposit, Australia: evidence from noble gases and halogens. Mineral Deposits 43:483–497

    Google Scholar 

  • Frost CD, von Blanckenburg F, Schoenberg R, Frost BR, Swapp SM (2007) Preservation of Fe isotope heterogeneities during diagenesis and metamorphism of banded iron formation. Contrib Mineral Petrol 153:211–235

  • Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron oxide copper-gold (IOCG) deposits through earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ Geol 105:641–654

    Google Scholar 

  • Heimann A, Beard BL, Johnson CM (2008) The role of volatile exsolution and subsolidus fluid/rock interactions in producing high 56Fe/54Fe ratios in siliceous igneous rocks. Geochim Cosmochim Acta 72:4379–4396

    Google Scholar 

  • Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Res 58:241–287

    Google Scholar 

  • Huang F, Zhang Z, Lundstrom CC, Zhi X (2011) Iron and magnesium isotopic compositions of peridotite xenoliths from eastern China. Geochim Cosmochim Acta 75:3318–3334

    Google Scholar 

  • Hurtig NC, Williams-Jones AE (2014) An experimental study of the transport of gold through hydration of AuCl in aqueous vapour and vapour-like fluids. Geochim Cosmochim Acta 127:305–325

    Google Scholar 

  • Hurwitz S, Navon O (1994) Bubble nucleation in rhyolitic melts: experiments at high pressure, temperature, and water content, Earth Planet. Sci Lett 122:267–280

    Google Scholar 

  • Johansson C, Barra F, Reich M, Deditius AP, Simon AC, Rojas P (2017) The Co-Ni signature of sulfide minerals from the Mantoverde IOCG deposit, northern Chile. Goldschmidt Abstracts, 1871

  • Jonsson E, Valentin RT, Högdahl K, Harri C, Weis F, Nilsson KP, Skelton A (2013) Magmatic origin of giant 'Kiruna-type' apatite-iron-oxide ores in central Sweden. Sci Rep 3. https://doi.org/10.1038/srep01644

  • Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Lundstrom C, Bindeman I, Munizaga R (2015a) Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology 43:491–594

    Google Scholar 

  • Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Wälle M, Heinrich CA, Holtz F, Munizaga R (2015b) Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic hydrothermal processes. Geochim Cosmochim Acta 171:15–38

    Google Scholar 

  • Knipping J, Webster JD, Simon AC, Holtz F (2019) Accumulation of magnetite by flotation on bubbles during decompression of silicate magma. Sci Rep 9:3852

    Google Scholar 

  • Lager I (2001) The geology of the Palaeoproterozoic limestone-hosted Dannemora iron deposit. The Geological Survey of Sweden, Sweden 54 p

    Google Scholar 

  • Lara L, Godoy E (1998) Hoja quebrada salitrosa, III Región de Atacama: Santiago, Chile. Servicio Nacional de Geología y Minería, Mapas Geológicos 4, escala 1:100,000

  • Marschik R, Kendrick MA (2015) Noble gas and halogen constraints on fluid sources in iron oxide-copper-gold mineralization: Mantoverde and La Candelaria, Northern Chile. Mineral Deposita 50:357–371

    Google Scholar 

  • Marshal LJ, Oliver NHS (2006) Monitoring fluid chemistry in IOCG-related metasomatic processes, eastern Mt Isa Block, Australia. Geofluids 6:45–66

    Google Scholar 

  • Millet MA, Baker JA, Payne CE (2012) Ultra-precise stable Fe isotope measurements by high resolution multiple-collector inductively coupled plasma mass spectrometry with a 57Fe-58Fe double spike. Chem Geol 304:18–25

    Google Scholar 

  • Mpodozis C, Ramos V (1990) The Andes of Chile and Argentina: circum-Pacific council for energy and mineral resources. Earth Sci Ser 11:59–90

    Google Scholar 

  • Mumin AH, Somarin AK, Jones B, Corriveau L, Ootes L, Camier J (2010) The IOCG-porphyry-epithermal continuum in the Great Bear Magmatic Zone, Northwest Territories, Canada. In: Corriveau L and Mumin AH (eds) Exploring for iron oxide copper-gold deposits: Canada and Global analogues. Geological Association of Canada, Short Course Number 20, pp 59–78

  • Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32

    Google Scholar 

  • Naslund HR, Henriquez F, Nyström JO, Vivallo W, Dobbs FM (2002) Magmatic iron ores and associated mineralisation: examples from the Chilean high Andes and coastal Cordillera. In: Porter TM (ed) Hydrothermal iron oxide copper–gold: a global perspective, 2nd edn. PGC Publishing, Adelaide, pp 207–226

    Google Scholar 

  • Neumann E-R, Svensen HH, Polozov AG, Hammer Ø (2017) Formation of Si-Al-Mg-Ca-rich zoned magnetite in an end-Permian phreatomagmatic pipe in the Tunguska Basin, East Siberia. Mineral Deposita 52:1205–1222

    Google Scholar 

  • Nyström JO, Henríquez F (1994) Magmatic features of iron ores of the Kiruna-type in Chile and Sweden: ore textures and magnetite geochemistry. Econ Geol 89:820–839

    Google Scholar 

  • Nyström JO, Billström K, Henríquez F, Fallick AE, Naslund HR (2008) Oxygen isotope composition of magnetite in iron ores of the Kiruna type in Chile and Sweden: GFF [Geologiska Föreningen]. 130:177–188

  • Pollard PJ (2006) An intrusion-related origin for Cu-Au mineralization in iron oxide-copper-gold (IOCG) provinces. Mineral Deposita 41:179–187

    Google Scholar 

  • Polyakov VB, Clayton RN, Horita J, Mineev SD (2007) Equilibrium iron isotope fractionation factors of minerals: Reevaluation from the data of nuclear inelastic resonant X-ray scattering and Mössbauer spectroscopy. Geochim Cosmochim Acta 71:3833–3846

    Google Scholar 

  • Porter TM (ed) (2000) Hydrothermal iron oxide copper-gold and related deposits: a global perspective. Australian mineral Foundation, Adelaide 349 p

    Google Scholar 

  • Reich M, Simon AC, Deditius A, Barra F, Chryssoulis S, Lagas G, Tardani D, Knipping J, Bilenker L, Sanchez-Alfaro P, Roberts MP, Munizaga R (2016) Trace element signature of pyrite from the Los Colorados iron oxide-apatite (IOA) deposit, Chile: a missing link between Andean IOA and IOCG systems? Econ Geol 111:743–761

    Google Scholar 

  • Richards JP, Mumin AH (2013a) Lithospheric fertilization and mineralization by arc magmas: Genetic links and secular differences between porphyry copper±molybdenum±gold and magmatic-hydrothermal iron oxide copper-gold deposits. In: Colpron M, Bissig T, Rusk BG, Thompson JFH (eds) Tectonics, metallogeny, and discovery: the North American Cordillera and Similar Accretionary Settings, vol 17. Society of Economic Geologists, Special Publication, pp 277–299

  • Richards JP, Mumin AH (2013b) Magmatic-hydrothermal processes within an evolving Earth: iron oxide-copper-gold and porphyry Cu ± Mo ± Au deposits. Geology. https://doi.org/10.1130/G34275.1

  • Rieger AA, Marschik R, Díaz M, Hölzl S, Chiaradia M, Akker B, Spangenberg JE (2010) The hypogene IOCG mineralization in the Mantoverde district, northern Chile. Econ Geol 105:1271–1299

    Google Scholar 

  • Rieger AA, Marschik R, Díaz M (2012) The evolution of the hydrothermal IOCG system in the Mantoverde district, northern Chile: new evidence from microthermometry and stable isotope geochemistry. Mineral Deposits 47:359–369

    Google Scholar 

  • Roberts DE, Hudson GRT (1983) The Olympic Dam copper-uranium-gold-silver deposit, Roxby Downs, South Australia. Econ Geol 78:799–822

    Google Scholar 

  • Saunier G, Pokrovski GS, Poitrasson F (2011) First experimental determination of iron isotope fractionation between hematite and aqueous solution at hydrothermal conditions. Geochim Cosmochim Acta 75:6629–6645

    Google Scholar 

  • Schüßler J (2008) Controls on stable iron isotope variations in magmatic systems—significance of mineral-melt isotopic fractionation in experiments and nature. Unpublished Ph.D. thesis, Faculty of Natural Science, Gottfried Wilhelm Leibniz Universität, Hannover, Germany, 165 p

  • Sillitoe RM (2003) Iron oxide-copper-gold deposits: An Andean view. Mineral Deposita 38:787–812

    Google Scholar 

  • Sillitoe RM, Burrows DR (2002) New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile. Econ Geol 97:1101–1109

    Google Scholar 

  • Simon AC, Pettke T, Candela PA, Piccoli PM, Heinrich CA (2004) Magnetite solubility and iron transport in magmatic-hydrothermal environments. Geochim Cosmochim Acta 68:4905–4914

    Google Scholar 

  • Simon AC, Knipping J, Reich M, Barra F, Deditius AP, Bilenker L, Childress T (2018) Kiruna-type iron oxide-apatite (IOA) and iron oxide copper-gold (IOCG) deposits form by a combination of igneous and magmatic-hydrothermal processes: evidence from the Chilean Iron Belt. Soc Econ Geol Special Publication No 21:89–114

  • Taylor HP (1967) Oxygen isotope studies of hydrothermal mineral deposits. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 1st edn. Holt, Rinehart and Winston, New York, pp 109–142

    Google Scholar 

  • Tornos F, Velasco F, Hanchar JM (2016) Iron-rich melts, magmatic magnetite, and superheated hydrothermal systems: the El Laco deposit, Chile. Geology 44(6):427–430

    Google Scholar 

  • Travisany V, Henriquez F, Nyström JO (1995) Magnetite lava flows in the Pleito-Melon District of the Chilean iron belt. Econ Geol 90:438–444

    Google Scholar 

  • Troll VR, Weis FA, Jonsson E, Andersson UB, Majidi SA, Högdahl K, Harris C, Millet MA, Chinnasamy SS, Kooijman E, Nilsson KP (2019) Global Fe-O isotope correlation reveals mamatic origin of Kiruna-type apatite-iron-oxide ores. Nature Communications 10(1):1712

  • Valley PM, Hanchar JM, Whitehouse MJ (2011) New insights on the evolution of the Lyon Mountain Granite and associated Kiruna-type magnetite-apatite deposits: Adirondack Mountains, New York State. Geosphere 7:357–389

    Google Scholar 

  • Vila T, Lindsay N, and Zamora R (1996) Geology of the Mantoverde copper deposit, northern Chile: a specularite-rich hydrothermal tectonic breccia related to the Atacama fault zone. Soc Econ Geol Special Publication 5:157–170

  • Weis F (2013) Oxygen and iron isotope systematics of the Grängesberg mining district (GMD), central Sweden. Unpublished Ph.D. Dissertation, Uppsala Universitet, Uppsala, Sweden, 77p

  • Williams PJ, Barton MD, Johnson DA, Fontboté L, de Haller A, Mark G, Oliver NHS. Marschik R (2005) Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin. Economic Geology 100th Anniversary volume, pp 371–405

  • Williams-Jones AE, Heinrich CA (2005) Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ Geol 100:1287–1312

    Google Scholar 

  • Williams-Jones AE, Migdisov AA (2014) Experimental constraints on the transport and deposition of metals in ore-forming hydrothermal systems. Soc Econ Geol 18:77–96

    Google Scholar 

  • Wood SA, Samson IM (1998) Solubility of ore minerals and complexation of ore metals in hydrothermal solutions. In: Richards J, Larson P (eds) Techniques in hydrothermal ore deposits. Reviews in Economic Geology 10:33–80.

  • Zamora R, Castillo B (2001) Mineralizació de Fe-Cu-Au en el distrito Mantoverde, Cordillera de la Costa, III Región de Atacama, Chile: Congreso Internacional de Prospectores y Exploradores, Lima, Conferencias, 2nd edn. Instituto de Ingenieros de Minas del Perú, Lima, Actas, 13p

  • Zheng Y-F (1991) Calculation of oxygen isotope fractionation in metal oxides. Geochim Cosmochim Acta 55:2299–2307

    Google Scholar 

Download references

Acknowledgments

TMC thanks Mantos Copper for providing access to drill core and generous hospitality, Zhenhao Zhou from the University of Illinois for amazing assistance with Fe isotope analyses, and H Mumin, AE Fayek, and one anonymous reviewer whose input greatly improved the quality of this paper.

Funding

TMC thanks the Society of Economic Geologists and the University of Michigan for providing funding. ACS acknowledges funding from NSF EAR Grants No. 1250239 and No. 1264560. MR and FB acknowledge funding from Millennium Science Initiative (MSI) through Millennium Nucleus for Metal Tracing along Subduction Grant NC130065, and FONDECYT Grant No. 1140780 “Metallogenesis of the Mesozoic magmatic arc of northern Chile: Testing the IOCG connection using a multi-proxy geochemical approach.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan M. Childress.

Additional information

Editorial handling: M. Fayek

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 989 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Childress, T.M., Simon, A.C., Reich, M. et al. Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits. Miner Deposita 55, 1489–1504 (2020). https://doi.org/10.1007/s00126-019-00936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-019-00936-x

Keywords

Navigation