Skip to main content
Log in

Muscle-specific activation of Ca2+/calmodulin-dependent protein kinase IV increases whole-body insulin action in mice

  • Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims/hypothesis

Aerobic exercise increases muscle glucose and improves insulin action through numerous pathways, including activation of Ca2+/calmodulin-dependent protein kinases (CAMKs) and peroxisome proliferator γ coactivator 1α (PGC-1α). While overexpression of PGC-1α increases muscle mitochondrial content and oxidative type I fibres, it does not improve insulin action. Activation of CAMK4 also increases the content of type I muscle fibres, PGC-1α level and mitochondrial content. However, it remains unknown whether CAMK4 activation improves insulin action on glucose metabolism in vivo.

Methods

The effects of CAMK4 activation on skeletal muscle insulin action were quantified using transgenic mice with a truncated and constitutively active form of CAMK4 (CAMK4) in skeletal muscle. Tissue-specific insulin sensitivity was assessed in vivo using a hyperinsulinaemic–euglycaemic clamp and isotopic measurements of glucose metabolism.

Results

The rate of insulin-stimulated whole-body glucose uptake was increased by ∼25% in CAMK4 mice. This was largely attributed to an increase of ∼60% in insulin-stimulated glucose uptake in the quadriceps, the largest hindlimb muscle. These changes were associated with improvements in insulin signalling, as reflected by increased phosphorylation of Akt and its substrates and an increase in the level of GLUT4 protein. In addition, there were extramuscular effects: CAMK4 mice had improved hepatic and adipose insulin action. These pleiotropic effects were associated with increased levels of PGC-1α-related myokines in CAMK4 skeletal muscle.

Conclusions/interpretation

Activation of CAMK4 enhances mitochondrial biogenesis in skeletal muscle while also coordinating improvements in whole-body insulin-mediated glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

AS160:

160 kDa substrate of the Akt serine/threonine kinase

CAMK:

Ca2+/calmodulin-dependent protein kinase

CAMK4 :

Truncated and constitutively active form of CAMK

CREB:

cAMP response element binding protein

DAG:

Diacylglycerol

EGP:

Endogenous glucose production

EDL:

Extensor digitorum longus

HDAC5:

Histone deacetylase 5

MEF2:

Myocyte enhancer factor 2

NIH:

National Institutes of Health

nPKC:

Novel protein kinase C

PGC-1α:

Peroxisome proliferator-activated receptor γ coactivator 1α

PP2A:

Protein phosphatase type 2A

PP2A/C:

Protein phosphatase type 2A catalytic subunit

PRAS40:

Akt1 substrate 1 (proline-rich)

UCP1:

Uncoupling protein 1 (mitochondrial, proton carrier)

VDAC:

Voltage-dependent ion channel

WAT:

White adipose tissue

WQD:

White quadriceps

References

  1. Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG (1990) Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 322:223–228

    Article  CAS  PubMed  Google Scholar 

  2. Cline GW, Petersen KF, Krssak M et al (1999) Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med 341:240–246

    Article  CAS  PubMed  Google Scholar 

  3. Rothman DL, Magnusson I, Cline G et al (1995) Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 92:983–987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. DeFronzo RA (2010) Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia 53:1270–1287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. DeFronzo RA (1997) Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidaemia and atherosclerosis. Neth J Med 50:191–197

    Article  CAS  PubMed  Google Scholar 

  6. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lee HY, Choi CS, Birkenfeld AL et al (2010) Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. Cell Metab 12:668–674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Rabol R, Petersen KF, Dufour S, Flannery C, Shulman GI (2011) Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. Proc Natl Acad Sci U S A 108:13705–13709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ren JM, Semenkovich CF, Gulve EA, Gao J, Holloszy JO (1994) Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. J Biol Chem 269:14396–14401

    CAS  PubMed  Google Scholar 

  10. Phielix E, Meex R, Moonen-Kornips E, Hesselink MK, Schrauwen P (2010) Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals. Diabetologia 53:1714–1721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Holloszy JO (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242:2278–2282

    CAS  PubMed  Google Scholar 

  12. Perseghin G, Price TB, Petersen KF et al (1996) Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med 335:1357–1362

    Article  CAS  PubMed  Google Scholar 

  13. Roden M (2012) Exercise in type 2 diabetes: to resist or to endure? Diabetologia 55:1235–1239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Rose AJ, Kiens B, Richter EA (2006) Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. J Physiol 574:889–903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Egan B, Carson BP, Garcia-Roves PM et al (2010) Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol 588:1779–1790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Smith JA, Collins M, Grobler LA, Magee CJ, Ojuka EO (2007) Exercise and CaMK activation both increase the binding of MEF2A to the Glut4 promoter in skeletal muscle in vivo. Am J Physiol Endocrinol Metab 292:E413–E420

    Article  CAS  PubMed  Google Scholar 

  17. Serpiello FR, McKenna MJ, Stepto NK, Bishop DJ, Aughey RJ (2011) Performance and physiological responses to repeated-sprint exercise: a novel multiple-set approach. Eur J Appl Physiol 111:669–678

    Article  PubMed  Google Scholar 

  18. Wu H, Kanatous SB, Thurmond FA et al (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296:349–352

    Article  CAS  PubMed  Google Scholar 

  19. Westphal RS, Anderson KA, Means AR, Wadzinski BE (1998) A signaling complex of Ca2+-calmodulin-dependent protein kinase IV and protein phosphatase 2A. Science 280:1258–1261

    Article  CAS  PubMed  Google Scholar 

  20. Wu JY, Ribar TJ, Cummings DE, Burton KA, McKnight GS, Means AR (2000) Spermiogenesis and exchange of basic nuclear proteins are impaired in male germ cells lacking Camk4. Nat Genet 25:448–452

    Article  CAS  PubMed  Google Scholar 

  21. Sato K, Suematsu A, Nakashima T et al (2006) Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat Med 12:1410–1416

    Article  CAS  PubMed  Google Scholar 

  22. Wright DC, Hucker KA, Holloszy JO, Han DH (2004) Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes 53:330–335

    Article  CAS  PubMed  Google Scholar 

  23. Blaeser F, Ho N, Prywes R, Chatila TA (2000) Ca(2+)-dependent gene expression mediated by MEF2 transcription factors. J Biol Chem 275:197–209

    Article  CAS  PubMed  Google Scholar 

  24. Lin J, Wu H, Tarr PT et al (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797–801

    Article  CAS  PubMed  Google Scholar 

  25. Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A 100:7111–7116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Calvo JA, Daniels TG, Wang X et al (2008) Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake. J Appl Physiol 104:1304–1312

    Article  CAS  PubMed  Google Scholar 

  27. Wu Z, Puigserver P, Andersson U et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  CAS  PubMed  Google Scholar 

  28. Summermatter S, Baum O, Santos G, Hoppeler H, Handschin C (2010) Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) promotes skeletal muscle lipid refueling in vivo by activating de novo lipogenesis and the pentose phosphate pathway. J Biol Chem 285:32793–32800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wende AR, Schaeffer PJ, Parker GJ et al (2007) A role for the transcriptional coactivator PGC-1alpha in muscle refueling. J Biol Chem 282:36642–36651

    Article  CAS  PubMed  Google Scholar 

  30. Choi CS, Befroy DE, Codella R et al (2008) Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proc Natl Acad Sci U S A 105:19926–19931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bogan JS, Hendon N, McKee AE, Tsao TS, Lodish HF (2003) Functional cloning of TUG as a regulator of GLUT4 glucose transporter trafficking. Nature 425:727–733

    Article  CAS  PubMed  Google Scholar 

  32. Bloemberg D, Quadrilatero J (2012) Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS ONE 7:e35273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Carlson CJ, Booth FW, Gordon SE (1999) Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Physiol 277:R601–R606

    CAS  PubMed  Google Scholar 

  34. Sano H, Kane S, Sano E et al (2003) Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem 278:14599–14602

    Article  CAS  PubMed  Google Scholar 

  35. Handschin C, Spiegelman BM (2008) The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 454:463–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Pedersen BK, Akerstrom TC, Nielsen AR, Fischer CP (2007) Role of myokines in exercise and metabolism. J Appl Physiol 103:1093–1098

    Article  CAS  PubMed  Google Scholar 

  37. Bostrom P, Wu J, Jedrychowski MP et al (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468

    Article  PubMed Central  PubMed  Google Scholar 

  38. Nielsen AR, Mounier R, Plomgaard P et al (2007) Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition. J Physiol 584:305–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Teboul L, Febbraio M, Gaillard D, Amri EZ, Silverstein R, Grimaldi PA (2001) Structural and functional characterization of the mouse fatty acid translocase promoter: activation during adipose differentiation. Biochem J 360:305–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Petersen KF, Befroy D, Dufour S et al (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Griffin ME, Marcucci MJ, Cline GW et al (1999) Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48:1270–1274

    Article  CAS  PubMed  Google Scholar 

  43. Anderson KA, Noeldner PK, Reece K, Wadzinski BE, Means AR (2004) Regulation and function of the calcium/calmodulin-dependent protein kinase IV/protein serine/threonine phosphatase 2A signaling complex. J Biol Chem 279:31708–31716

    Article  CAS  PubMed  Google Scholar 

  44. Ugi S, Imamura T, Maegawa H et al (2004) Protein phosphatase 2A negatively regulates insulin’s metabolic signaling pathway by inhibiting Akt (protein kinase B) activity in 3T3-L1 adipocytes. Mol Cell Biol 24:8778–8789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Zhao M, New L, Kravchenko VV et al (1999) Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol 19:21–30

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Holmes BF, Kurth-Kraczek EJ, Winder WW (1999) Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol 87:1990–1995

    CAS  PubMed  Google Scholar 

  47. Carey AL, Kingwell BA (2009) Novel pharmacological approaches to combat obesity and insulin resistance: targeting skeletal muscle with ‘exercise mimetics’. Diabetologia 52:2015–2026

    Article  CAS  PubMed  Google Scholar 

  48. Summermatter S, Shui G, Maag D, Santos G, Wenk MR, Handschin C (2013) PGC-1alpha improves glucose homeostasis in skeletal muscle in an activity-dependent manner. Diabetes 62:85–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Thai MV, Guruswamy S, Cao KT, Pessin JE, Olson AL (1998) Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression in transgenic mice. Regulation of MEF2 DNA binding activity in insulin-deficient diabetes. J Biol Chem 273:14285–14292

    Article  CAS  PubMed  Google Scholar 

  50. McGee SL, Howlett KF, Starkie RL, Cameron-Smith D, Kemp BE, Hargreaves M (2003) Exercise increases nuclear AMPK alpha2 in human skeletal muscle. Diabetes 52:926–928

    Article  CAS  PubMed  Google Scholar 

  51. McKinsey TA, Zhang CL, Lu J, Olson EN (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408:106–111

    Article  CAS  PubMed  Google Scholar 

  52. Passier R, Zeng H, Frey N et al (2000) CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 105:1395–1406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Ren JM, Marshall BA, Mueckler MM, McCaleb M, Amatruda JM, Shulman GI (1995) Overexpression of Glut4 protein in muscle increases basal and insulin-stimulated whole body glucose disposal in conscious mice. J Clin Invest 95:429–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank D. W. Frederick, Y. Kosover, I. Moore and A. Groszmann (Yale University School of Medicine, New Haven, CT, USA) for expert technical assistance with the studies.

Funding

This work was supported by grants from the US Public Health Service (R01 DK-40936, P30 DK-45735, U24 DK-059635) and a VA Merit Award (VTS). ALB was supported by a grant from the German Research Foundation (DFG, BI1292/4-1). ZY was supported by NIH grant AR050429.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

HL, AKG, JGC, SK, BG, MK, DZ, TG, ALB, FRJ and MJJ performed experiments, analysed data and revised the manuscript; HL, CSC, ZY, RSW, GIS and VTS designed the study and revised the manuscript; HL, CSC, GIS, VTS were responsible for the conception of the study and drafting the article. All authors approved the final version. VTS is responsible for the integrity of the work as a whole.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varman T. Samuel.

Additional information

Arijeet K. Gattu and João-Paulo G. Camporez contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1

(PDF 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HY., Gattu, A.K., Camporez, JP.G. et al. Muscle-specific activation of Ca2+/calmodulin-dependent protein kinase IV increases whole-body insulin action in mice. Diabetologia 57, 1232–1241 (2014). https://doi.org/10.1007/s00125-014-3212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-014-3212-1

Keywords

Navigation