Skip to main content
Log in

A large presence/absence variation in the promotor of the ClLOG gene determines trichome elongation in watermelon

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The ClLOG gene encoding a cytokinin riboside 5ʹ-monophosphate phosphoribohydrolase determines trichome length in watermelon, which is associated with its promoter variations.

Abstract

Trichomes, which are differentiated from epidermal cells, are special accessory structures that cover the above-ground organs of plants and possibly contribute to biotic and abiotic stress resistance. Here, a bulked segregant analysis (BSA) of an F2 population with significant variations in trichome length was undertaken. A 1.84-Mb candidate region on chromosome 10 was associated with trichome length. Resequencing and fine-mapping analyses indicated that a 12-kb structural variation in the promoter of Cla97C10G203450 (ClLOG) led to a significant expression difference in this gene in watermelon lines with different trichome lengths. In addition, a virus-induced gene silencing analysis confirmed that ClLOG positively regulated trichome elongation. These findings provide new information and identify a potential target gene for controlling multicellular trichome elongation in watermelon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The RNA-seq and BSA-seq data have been deposited in NGDC Bioproject PRJCA024248 and PRJCA024253. Other data generated in this study are included in this article and its supplementary information files.

References

  • Agrawal AA (1998) Induced responses to herbivory and increased plant performance. Science 279:1201–1202

    Article  CAS  PubMed  Google Scholar 

  • Argueso CT, Ferreira FJ, Epple P, To JP, Hutchison CE, Schaller GE, Dangl JL, Kieber JJ (2012) Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet 8:e1002448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balkunde R, Pesch M, Hülskamp M (2010) Trichome patterning in Arabidopsis thaliana from genetic to molecular models. Curr Top Dev Biol 91:299–321

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Su D, Li J, Ying S, Deng H, He X, Zhu Y, Li Y, Chen Y, Pirrello J, Bouzayen M, Liu Y, Liu M (2020) Overexpression of bHLH95, a basic helix-loop-helix transcription factor family member, impacts trichome formation via regulating gibberellin biosynthesis in tomato. J Exp Bot 71:3450–3462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H-y, Zhu Z, Wang X-w, Li Y-y, Hu D-l, Zhang X-f, Jia L-q, Cui Z-b, Sang X-c (2023) Less hairy leaf 1, an RNaseH-like protein, regulates trichome formation in rice through auxin. J Integr Agric 22:31–40

    Article  CAS  Google Scholar 

  • Chien JC, Sussex IM (1996) Differential regulation of trichome formation on the adaxial and abaxial leaf surfaces by gibberellins and photoperiod in Arabidopsis thaliana (L.) Heynh. Plant Physiol 111:1321–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Rybel B, Adibi M, Breda AS, Wendrich JR, Smit ME, Novák O, Yamaguchi N, Yoshida S, Van Isterdael G, Palovaara J, Nijsse B, Boekschoten MV, Hooiveld G, Beeckman T, Wagner D, Ljung K, Fleck C, Weijers D (2014) Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345:1255215

    Article  PubMed  Google Scholar 

  • Debi BR, Taketa S, Ichii M (2005) Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (<i>Oryza sativa</i>). J Plant Physiol 162:507–515

    Article  CAS  Google Scholar 

  • Guo S, Zhao S, Sun H, Wang X, Wu S, Lin T, Ren Y, Gao L, Deng Y, Zhang J, Lu X, Zhang H, Shang J, Gong G, Wen C, He N, Tian S, Li M, Liu J, Wang Y, Zhu Y, Jarret R, Levi A, Zhang X, Huang S, Fei Z, Liu W, Xu Y (2019) Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat Genet 51:1616–1623

    Article  CAS  PubMed  Google Scholar 

  • Hauser MT (2014) Molecular basis of natural variation and environmental control of trichome patterning. Front Plant Sci 5:320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hua B, Chang J, Xu Z, Han X, Xu M, Yang M, Yang C, Ye Z, Wu S (2021) HOMEODOMAIN PROTEIN8 mediates jasmonate-triggered trichome elongation in tomato. New Phytol 230:1063–1077

    Article  CAS  PubMed  Google Scholar 

  • Kang JH, Shi F, Jones AD, Marks MD, Howe GA (2010) Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. J Exp Bot 61:1053–1064

    Article  CAS  PubMed  Google Scholar 

  • Kirik V, Schnittger A, Radchuk V, Adler K, Hülskamp M, Bäumlein H (2001) Ectopic expression of the Arabidopsis AtMYB23 gene induces differentiation of trichome cells. Dev Biol 235:366–377

    Article  CAS  PubMed  Google Scholar 

  • Kirik V, Lee MM, Wester K, Herrmann U, Zheng Z, Oppenheimer D, Schiefelbein J, Hulskamp M (2005) Functional diversification of MYB23 and GL1 genes in trichome morphogenesis and initiation. Development 132:1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–655

    Article  CAS  PubMed  Google Scholar 

  • Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H (2009) Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21:3152–3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Cao C, Zhang C, Zheng S, Wang Z, Wang L, Ren Z (2015) The identification of Cucumis sativus Glabrous 1 (CsGL1) required for the formation of trichomes uncovers a novel function for the homeodomain-leucine zipper I gene. J Exp Bot 66:2515–2526

    Article  CAS  PubMed  Google Scholar 

  • Liang G, He H, Li Y, Ai Q, Yu D (2014) MYB82 functions in regulation of trichome development in Arabidopsis. J Exp Bot 65:3215–3223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao N, Hu Z, Li Y, Hao J, Chen S, Xue Q, Ma Y, Zhang K, Mahmoud A, Ali A, Malangisha GK, Lyu X, Yang J, Zhang M (2020) Ethylene-responsive factor 4 is associated with the desirable rind hardness trait conferring cracking resistance in fresh fruits of watermelon. Plant Biotechnol J 18:1066–1077

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Liang Z, Aranda MA, Hong N, Liu L, Kang B, Gu Q (2020) A cucumber green mottle mosaic virus vector for virus-induced gene silencing in cucurbit plants. Plant Methods 16:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyu X, Shi L, Zhao M, Li Z, Liao N, Meng Y, Ma Y, Zhou Y, Xue Q, Hu Z, Yang J, Zhang M (2022) A natural mutation of the NST1 gene arrests secondary cell wall biosynthesis in the seed coat of a hull-less pumpkin accession. Hortic Res 9:uhac136

    Article  PubMed  PubMed Central  Google Scholar 

  • Maes L, Goossens A (2010) Hormone-mediated promotion of trichome initiation in plants is conserved but utilizes species-and trichome-specific regulatory mechanisms. Plant Signal Behav 5:205–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansfeld BN, Grumet R (2018) QTLseqr: an R package for bulk segregant analysis with next-generation sequencing. Plant Genom 11:180006

    Article  Google Scholar 

  • Marhavý P, Duclercq J, Weller B, Feraru E, Bielach A, Offringa R, Friml J, Schwechheimer C, Murphy A, Benková E (2014) Cytokinin controls polarity of PIN1-dependent auxin transport during lateral root organogenesis. Curr Biol CB 24:1031–1037

    Article  PubMed  Google Scholar 

  • Matías-Hernández L, Aguilar-Jaramillo AE, Osnato M, Weinstain R, Shani E, Suárez-López P, Pelaz S (2016) TEMPRANILLO reveals the mesophyll as crucial for epidermal trichome formation. Plant Physiol 170:1624–1639

    Article  PubMed  PubMed Central  Google Scholar 

  • Mauricio R, Rausher MD (1997) Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evol Int J Organ Evol 51:1435–1444

    Article  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers JH (1991) Thorns, spines, prickles and hairs : are they stimulated by herbivory and do they deter herbivores?

  • Oppenheimer DG, Herman PL, Sivakumaran S, Esch J, Marks MD (1991) A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 67:483–493

    Article  CAS  PubMed  Google Scholar 

  • Paris HS (2015) Origin and emergence of the sweet dessert watermelon, Citrullus lanatus. Ann Bot 116:133–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plett JM, Wilkins O, Campbell MM, Ralph SG, Regan S (2010) Endogenous overexpression of Populus MYB186 increases trichome density, improves insect pest resistance, and impacts plant growth. Plant J Cell Mol Biol 64:419–432

    Article  CAS  Google Scholar 

  • Schellmann S, Hülskamp M (2005) Epidermal differentiation: trichomes in Arabidopsis as a model system. Int J Dev Biol 49:579–584

    Article  PubMed  Google Scholar 

  • Schilmiller AL, Miner DP, Larson M, McDowell E, Gang DR, Wilkerson C, Last RL (2010) Studies of a biochemical factory: tomato trichome deep expressed sequence tag sequencing and proteomics. Plant Physiol 153:1212–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwab B, Folkers U, Ilgenfritz H, Hülskamp M (2000) Trichome morphogenesis in Arabidopsis. Philos Trans R Soc Lond B Biol Sci 355:879–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan C-M, Shangguan X-X, Zhao B, Zhang X-F, Chao L-m, Yang C-Q, Wang L-J, Zhu H-Y, Zeng Y-D, Guo W-Z, Zhou B-L, Hu G-J, Guan X-Y, Chen ZJ, Wendel JF, Zhang T-Z, Chen X-Y (2014) Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat Commun 5:5519

    Article  CAS  PubMed  Google Scholar 

  • Skaltsa H, Verykokidou E, Harvala C, Karabourniotis G, Manetas Y (1994) UV-B protective potential and flavonoid content of leaf hairs of Quercus-ilex. Phytochemistry 37:987–990

    Article  CAS  Google Scholar 

  • Sun W, Gao D, Xiong Y, Tang X, Xiao X, Wang C, Yu S (2017) Hairy leaf 6, an AP2/ERF transcription factor, interacts with OsWOX3B and regulates trichome formation in rice. Mol Plant 10:1417–1433

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J Cell Mol Biol 74:174–183

    Article  CAS  Google Scholar 

  • Takatsuka H, Higaki T, Umeda M (2018) Actin reorganization triggers rapid cell elongation in roots. Plant Physiol 178:1130–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian D, Tooker J, Peiffer M, Chung SH, Felton GW (2012) Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta 236:1053–1066

    Article  CAS  PubMed  Google Scholar 

  • Tissier A, Morgan JA, Dudareva N (2017) Plant volatiles: going “In” but not “Out” of trichome cavities. Trends Plant Sci 22:930–938

    Article  CAS  PubMed  Google Scholar 

  • Traw MB, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133:1367–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traw BM, Dawson TE (2002) Differential induction of trichomes by three herbivores of black mustard. Oecologia 131:526–532

    Article  PubMed  Google Scholar 

  • Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci USA 95:4766–4771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164

    Article  PubMed  PubMed Central  Google Scholar 

  • Wendrich JR, Yang B, Vandamme N, Verstaen K, Smet W, Van de Velde C, Minne M, Wybouw B, Mor E, Arents HE, Nolf J, Van Duyse J, Van Isterdael G, Maere S, Saeys Y, De Rybel B (2020) Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. Science 370:eaay4970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worthen JM, Yamburenko MV, Lim J, Nimchuk ZL, Kieber JJ, Schaller GE (2019) Type-B response regulators of rice play key roles in growth, development and cytokinin signaling. Development 146:dev174870

    Article  CAS  PubMed  Google Scholar 

  • Xia X-C, Hu Q-Q, Li W, Chen Y, Han L-H, Tao M, Wu W-Y, Li X-B, Huang G-Q (2018) Cotton (Gossypium hirsutum) JAZ3 and SLR1 function in jasmonate and gibberellin mediated epidermal cell differentiation and elongation. Plant Cell, Tissue Organ Cult 133:249–262

    Article  CAS  Google Scholar 

  • Xiao YH, Li DM, Yin MH, Li XB, Zhang M, Wang YJ, Dong J, Zhao J, Luo M, Luo XY, Hou L, Hu L, Pei Y (2010) Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis. J Plant Physiol 167:829–837

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Kapteyn J, Gang DR (2008) A systems biology investigation of the MEP/terpenoid and shikimate/phenylpropanoid pathways points to multiple levels of metabolic control in sweet basil glandular trichomes. Plant J Cell Mol Biol 54:349–361

    Article  CAS  Google Scholar 

  • Yuan Y, Xu X, Luo Y, Gong Z, Hu X, Wu M, Liu Y, Yan F, Zhang X, Zhang W, Tang Y, Feng B, Li Z, Jiang CZ, Deng W (2021) R2R3 MYB-dependent auxin signalling regulates trichome formation, and increased trichome density confers spider mite tolerance on tomato. Plant Biotechnol J 19:138–152

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130:4859–4869

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Zheng X, Song S, Zeng Q, Hou L, Li D, Zhao J, Wei Y, Li X, Luo M, Xiao Y, Luo X, Zhang J, Xiang C, Pei Y (2011) Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol 29:453–458

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Sun L, Zhao Y, An L, Yan A, Meng X, Gan Y (2013) Zinc Finger Protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin and cytokinin signaling in Arabidopsis thaliana. New Phytol 198:699–708

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Sun X, Zhang Q, Song P, Hu Q, Zhang X, Li X, Hu J, Pan J, Sun S, Weng Y, Yang L (2018) GLABROUS (CmGL) encodes a HD-ZIP IV transcription factor playing roles in multicellular trichome initiation in melon. TAG Theor Appl Genet Theoretische Und Angewandte Genetik 131:569–579

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Earmarked Fund for China Agriculture Research System (CARS25-17), the Project of Sanya Yazhou Bay Science and Technology City (SCKJ-JYRC-2022-18), the Fundamental Research Funds for the Central Universities (+ 226-2022-00100), the high-level talents of Zhejiang Province (2021R51007), Science and technology innovation platform for the watermelon and melon breeding, reproduction, and spreading of Zhejiang Province (2020-KYY-NSFZ-0314), the Key Research Project of Ningbo Municipal Government (2021Z057), and the Key Science and Technology Program for Agricultural (Vegetable) New Variety Breeding of Zhejiang Province (2021C02065).

Author information

Authors and Affiliations

Authors

Contributions

ZH and MZ conceived and designed the study; YM conducted all experiments and wrote the manuscript; YW and ZZ participated in results analysis; RZ, YZ, YB, and YX helped perform parts of experiments; XL and JY participated in research discussion; all authors reviewed the manuscript.

Corresponding author

Correspondence to Zhongyuan Hu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethical approval

Not applicable.

Additional information

Communicated by Sandra Elaine Branham.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Wang, Y., Zhou, Z. et al. A large presence/absence variation in the promotor of the ClLOG gene determines trichome elongation in watermelon. Theor Appl Genet 137, 98 (2024). https://doi.org/10.1007/s00122-024-04601-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-024-04601-4

Navigation