Skip to main content
Log in

Cotton heterosis and hybrid cultivar development

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Cotton, the most important economic crop in the world, displays strong hybrid vigor, and has long been a subject for hybrid cultivar breeding. Here, advances in the theoretical and applied research in cotton heterosis along with its hybrid cultivar development by hand-emasculation and pollination (HEP), cytoplasmic (CMS) and genic male sterile lines (GMS) mainly in China during the past few decades are presented in this review. Three types of hybrids produced by HEP, CMS and GMS facilitating hybrid seed production with hand-pollination have been developed and are being planted simultaneously in cotton production. However, most hybrids commercially planted in production are produced by HEP, therefore, F2 seeds are being extensively planted due to the high cost to produce F1 seed. F2 generations of these combinations exceed the check cultivars in yield usually up to 5~15%. GMS genes (ms2 and ms5ms6) used in hybrid seed production and casual mitochondrial genes for G. harknessii CMS have been cloned. Challenges and opportunities in cotton heterosis and future hybrid cultivar development in cotton are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atlin GN (1995) Cytoplasmic male-sterile synthetics: a new approach to the exploitation of heterosis in rape. Theor Appl Genet 91:1173–1176

    Article  CAS  PubMed  Google Scholar 

  • Balls WL (1908) Mendelian studies in Egyptian cotton. J Agric Sci 2:346–379

    Article  Google Scholar 

  • Bohra A, Jha UC, Adhimoolam P, Bisht D, Singh NP (2016) Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep 35:967–993

    Article  CAS  PubMed  Google Scholar 

  • Budar F, Pelletier G (2001) Male sterility in plants: occurrence, determinism, significance and use. C R Acad Sci III 324:543–550

    Article  CAS  PubMed  Google Scholar 

  • Chacón MG, Fournier AE, Tran F, Dittrich-Domergue F, Pulsifer IP, Domergue F, Rowland O (2013) Identification of amino acids conferring chain length substrate specificities on fatty alcohol-forming reductases FAR5 and FAR8 from Arabidopsis thaliana. J Biol Chem 288(42):30345–30355

    Article  PubMed  PubMed Central  Google Scholar 

  • Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends Genet 23:81–90

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Liu YG (2014) Male sterility and fertility restoration in crops. Ann Rev Plant Biol 65:579–606

    Article  CAS  Google Scholar 

  • Chen DY, Ding YZ, Guo WZ, Zhang TZ (2009) Molecular mapping of genic male-sterile genes ms15, ms5 and ms6 in tetraploid cotton. Plant Breed 128:193–198

    Article  CAS  Google Scholar 

  • Cui LM, Fu HQ, Zhang XY (1994) Development of cotton hybrid, Jimian 18. China Cottons 21(8):24

    Google Scholar 

  • Davis DD (1978) Hybrid cotton: specific problems and potential. Adv Agron 30:129–157

    Article  Google Scholar 

  • Department of Biology, Nanchong Normal University (1978) Studies on insect pollination in cotton. China Cottons 5(3):23–27

    Google Scholar 

  • Dever JK, Gannaway JR (1992) Relative fiber uniformity between parent and F1 and F2 generations in cotton. Crop Sci 32(6):1402–1408

    Article  Google Scholar 

  • Dewey RE, Timothy DH, Levings CS (1991) Chimeric mitochondrial genes expressed in the C male-sterile cytoplasm of maize. Curr Genet 20:475–482

    Article  CAS  PubMed  Google Scholar 

  • Feng FZ (1988) An introduction to a male sterile germplasm in cotton. China Cottons 15(3):15–16

    Google Scholar 

  • Feng FZ (1990) Primary studies on insect pollination male sterile line to produce hybrid seeds. China Cottons 17(5):16

    Google Scholar 

  • Feng CD, Stewart JM, Zhang JF (2005) STS markers linked to the Rf1 fertility restorer gene of cotton. Theor Appl Genet 110:237–243

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Zhang X, Zhang M, Guo L, Qi T, Tang H, Zhu H, Wang H, Qiao X, Xing C, Wu J (2021) Physical mapping and InDel marker development for the restorer gene Rf2 in cytoplasmic male sterile CMS-D8 cotton. BMC Genom 22:24

    Article  CAS  Google Scholar 

  • Feng C, Guo J, Nie Y, Wu Z, Zhang X, Zhang J, Stewart JM (2000) Cytoplasmic-nuclear male sterility in cotton: comparative RFLP analysis of mitochondrial DNA. In: Proceedings Beltwide Cotton Production Research Conference, San Antonio, USA, pp. 511–512

  • Gao B, Ren G, Wen T, Li H, Zhang X, Lin Z (2022) A super PPR cluster for restoring fertility revealed by genetic mapping, homocap-seq and de novo assembly in cotton. Theor Appl Genet 135:637–652

    Article  CAS  PubMed  Google Scholar 

  • Guo WZ, Zhang TZ, Pan JJ, Kohel RJ (1998) Identification of RAPD marker linked with fertility-restoring gene of cytoplasmic male sterile lines in upland cotton. Ch Sci Bull 43:52–54

    Article  CAS  Google Scholar 

  • Guo XM, Tan LW, Liu ZD (2002) Evaluating germplasm resource value of Zhongmian 12. China Cotton 29:12–14

    Google Scholar 

  • Guo SD, Zhang R, Wang Y (2007) Research on genetic basis of three-line cotton. Bull Agric Sci Technol 12:11–12

    Google Scholar 

  • Gururajan KN, Srinivasan K (1975) Estimation of natural cross-pollination in male sterile upland cotton. Ind J Agric Sci 45:352–355

    Google Scholar 

  • Horn R, Gupta KJ, Colombo N (2014) Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion 19:198–205

    Article  CAS  PubMed  Google Scholar 

  • Hou L, Xiao Y, Li X, Wang W, Luo X, Pei Y (2002) The cDNA-AFLP differential display in developing anthers between cotton male sterile and fertile line of “Dong A.” J Genet Genom 29:359–363

    CAS  Google Scholar 

  • Hu J, Huang W, Huang Q, Qin X, Yu C, Wang L, Li S, Zhu R, Zhu Y (2014) Mitochondria and cytoplasmic male sterility in plants. Mitochondrion 19:282–288

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K, Fang D, Liu X, Ruan Y-L, Rahman M-U, Han J, Wang K, Wang Q, Wu H, Mei G, Zang Y, Han Z, Xu C, Shen W, Yang D, Si Z, Dai F, Zou L, Huang F, Bai Y, Zhang Y, Brodt A, Ben-Hamo H, Zhu X, Zhou B, Guan X, Zhu S, Chen X, Zhang TZ (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51:739–748

    Article  CAS  PubMed  Google Scholar 

  • Hua JP, Zhang C, Yi XD, Zhang SX, Chen DF (2003) Cultivation and application of distant nucleoplasm hybrids in cotton. Hubei Agric Sci 4:25–28

    Google Scholar 

  • Hua XN, Zhou X, Huang JQ, Zhu SL, Yu SJ, Zhang LS, Liu XM (1963) Studies on heterosis exploitation of F1 hybrids between G. barbadense and G. hirsutum L. Acta Agron Sin 2(1):1–27

    Google Scholar 

  • Huang ZK (2007) Cotton varieties and their genealogy in China. China Agric Sci Press, Beijing

    Google Scholar 

  • Huang GW, Shi XZ (1988) Chuanzha 4, a cotton hybrid by genic male sterile line. China Cottons 15(3):19

    Google Scholar 

  • Huang GW, Gou YG, Zhang DM, Jiang W, Zhang XQ (1982) Genetic analysis of several genic male sterile lines in Upland cotton in China. J Sichuan Agric Sci Technol 2:1–4

    Google Scholar 

  • Iwabuchi M, Koizuka N, Fujimoto H, Sakai T, Imamura J (1999) Plant Mol Biol 39:183–188

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman KS (2005) Indian Bt gene monoculture, potential time bomb. Nat Biotechnol 23:158

  • Jia ZC (1990) Selection of a male-sterile line 104–7A of cotton and its complete set of three lines. China Cottons 6:11

    Google Scholar 

  • Jiang H, Lu Q, Qiu S, Yu H, Wang Z, Yu Z, Lu Y, Wang L, Xia F, Wu Y, Li F, Zhang Q, Liu G, Song D, Ma C, Ding Q, Zhang X, Zhang L, Zhang X, Li X, Zhang J, Xiao J, Li X, Wang N, Ouyang Y, Zhou F, Zhang Q (2022) Fujian cytoplasmic male sterility and the fertility restorer gene OsRf19 provide a promising breeding system for hybrid rice. Proc Nat Acad Sci, USA 119(34):e2208759119

    Article  CAS  PubMed  Google Scholar 

  • Jing SR, Xing ZZ, Yuan JL, Liu SL, Wang HL (1995) Development of Zhongzha 028 hybrid and its cultivation. China Cottons 22(12):22–23

    Google Scholar 

  • Jing B, Heng S, Tong D, Wan Z, Fu T, Tu J, Ma C, Yi B, Wen J, Shen J (2012) A male sterility-associated cytotoxic protein ORF288 in Brassica juncea causes aborted pollen development. J Exp Bot 63:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Jing SR, Liu SL, Yuan YL, Xing CZ (1994) Studies of utilization of genetic double recessive male sterile G. hirsutum L. Acta Gossypii Sin 6:28–30

    Google Scholar 

  • Justus N, Leinweber L (1960) A heritable partially male-sterile character in cotton. J Hered 51:192–192

    Article  Google Scholar 

  • Khan A, Kong X, Liao X, Zheng J, You J, Li M, Hussain RM, Raza H, Zhou R (2022) Mitochondrial gene expression analysis reveals aberrant transcription of cox3 in Gossypium barbadense CMS line H276A. Dev Genes Evol 232:15–23

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Zhang D (2018) Molecular control of male fertility for crop hybrid breeding. Trends Plant Sci 23:53–65

    Article  CAS  PubMed  Google Scholar 

  • Kime PH, Tilley RH (1947) Hybrid vigor in Upland cotton-effect on yield and quality. J Am Soc Agron 39:308–317

    Article  Google Scholar 

  • Kohel RJ, Lewis CF (1984) Cotton. American Society of Agronomy, Madison, Wisconsin

    Book  Google Scholar 

  • Lambright L (2019) Hybrid sorghum product development and production. Methods Mol Biol 1931:3–9

    Article  CAS  PubMed  Google Scholar 

  • Li YQ, Zhen ZY, Jing L, Yang FQ (1997) An introduction to Xiangzamian 2. China Cottons 24(10):28–29

    Google Scholar 

  • Li S, Chen Z, Zhao N, Wang Y, Nie H, Hua J (2018) The comparison of four mitochondrial genomes reveals cytoplasmic male sterility candidate genes in cotton. BMC Genom 19(1):1–15

    Article  CAS  Google Scholar 

  • Li M, Chen L, Khan A, Kong X, Khan MR, Rao MJ, Wang J, Wang L, Zhou R (2021) Transcriptome and MiRNA omics analyses identify genes associated with cytoplasmic male sterility in cotton (Gossypium hirsutum L). Int J Mol Sci 22(9):4684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu LW, Guo WZ, Zhu XF, Zhang TZ (2003) Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L. Theor Appl Genet 106:461–469

    Article  CAS  PubMed  Google Scholar 

  • Liu RZ, Wang BH, Guo WZ, Qin YS, Wang LG, Zhang YM, Zhang TZ (2012) Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L. Mol Breed 29:297–311

    Article  CAS  Google Scholar 

  • Liu J, Pang C, Wei H, Song M, Meng Y, Fan S, Yu S (2014) Proteomic analysis of anthers from wild-type and photosensitive genetic male sterile mutant cotton (Gossypium hirsutum L.). BMC Plant Biol 14:390

    Article  PubMed  PubMed Central  Google Scholar 

  • Loden HD, Richmond TR (1951) Hybrid vigor in cotton: cytogenetic aspects and potential application. Econ Bot 5:387–408

    Article  Google Scholar 

  • Luo D, Xu H, Liu Z, Guo J, Li H, Chen L, Fang C, Zhang Q, Bai M, Yao N, Wu H, Wu H, Ji C, Zheng H, Chen Y, Ye S, Li X, Zhao X, Li R, Liu YG (2013) A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet 45:573–577

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Xing C, Guo L, Gong Y, Wang H, Zhao Y, Wu J (2007) Analysis of differentially expressed genes in genic male sterility cotton (Gossypium hirsutum L.) using cDNA-AFLP. J Genet Genom 34:536–543

    Article  CAS  Google Scholar 

  • Ma H, Wu Y, Lv R, Chi H, Zhao Y, Li Y, Liu H, Ma Y, Zhu L, Guo X, Kong J, Wu J, Xing C, Zhang X, Min L (2022) Cytochrome P450 mono-oxygenase CYP703A2 plays a central role in sporopollenin formation and ms5ms6 fertility in cotton. J Integr Plant Biol 64:2009–2025

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Dai F, Si ZF, Fang L, Zhang TZ (2022) Duplicate mutations of GhCYP450 lead to the production of ms5m6 male sterile line in cotton. Theor Appl Genet (accepted)

  • Mell PH (1894) Experiments in crossing for the purpose of improving the cotton fibers. Alabama Agric Exp Stat Bull 56

  • Melonek J, Duarte J, Martin J, Beuf L, Murigneux A, Varenne P, Comadran J, Specel S, Levadoux S, Bernath-Levin K, Torney F, Pichon JP, Perez P, Small I (2021) The genetic basis of cytoplasmic male sterility and fertility restoration in wheat. Nat Commun 12:1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meredith WR Jr (1990) Yield and fiber-quality potential for second-generation cotton hybrids. Crop Sci 30:1045–1048

    Article  Google Scholar 

  • Meredith WR Jr, Bridge RR, Chism JF (1970) Relative performance of F1 and F2 hybrids from doubled haploids and their parent varieties in Upland cotton, Gossypium hirsutum L. Crop Sci 10:295–298

    Article  Google Scholar 

  • Meredith WR (1984) Quantitative genetics. In: Lewis CF, Kohel RJ (eds) Cotton. SSSA Inc Publishers, Madison, pp 131–150

    Google Scholar 

  • Meyer VV (1969) Some aspects of genes, cytoplasm and environment on male sterility of cotton(Gossypium). Crop Sci 9:237–242

    Article  Google Scholar 

  • Meyer VG (1975) Male-sterility from Gossypium-harknessii. J Hered 66:23–27

    Article  Google Scholar 

  • Meyer VG, Meyer JR (1965) Cytoplasmically controlled male sterility in cotton. Crop Sci 5:444–448

    Article  Google Scholar 

  • Munir S, Hussain SB, Manzoor H, Quereshi MK, Zubair M, Nouman W, Shehzad AN, Rasul S, Manzoor SA (2016) Heterosis and correlation in interspecific and intraspecific hybrids of cotton. Genet Mol Res 15(2):15028083

    Article  Google Scholar 

  • Paroda RS, Basu AK (1993) Cotton scenario with particular reference to hybrid cotton. In: Proceedings FAO-ICAR regional expert consultation on hybrid cotton. Oct. 22-25, 1990. CICR, Nagpur, India, pp. 21-46

  • Qian DS, Zhang XG, Zhu Y, Xie QL, Xu NN, Yuan ZK, Duan MX, Zhang JQ, Jing CL, Ma JF (1997) High yield hybrid resistant to Fusarium in Upland cotton-Suzha16. China Cottons 24(10):30

    Google Scholar 

  • Quisenberry JE, Kohel RJ (1968) A leaf abnormality for the identification of a genetic male sterile in Gossypium hirsutum L. Crop Sci 8:369–370

    Article  Google Scholar 

  • Raja D, Kumar MS, Devi PR, Loganathan S, Ramya K, Kannan N, Subramanian V (2018) Identification of molecular markers associated with genic male sterility in tetraploid cotton (Gossypium hirsutum L.) through bulk segregant analysis using a cotton SNP 63K array. Czech J Genet Plant Breed 54:154–160

    Article  CAS  Google Scholar 

  • Rhyne CL (1991) Male-steriles ms5ms5ms6ms6 and ms8ms8ms9ms9. In: Proceedings Beltwide cotton production research conference, USA, pp. 532-533

  • Sarfraz Z, Iqbal MS, Pan Z, Jia Y, He S, Wang Q, Qin H, Liu J, Liu H, Yang J, Ma Z, Xu D, Yang J, Zhang J, Gong W, Geng X, Li Z, Cai Z, Zhang X, Zhang X, Huang A, Yi X, Zhou G, Li L, Zhu H, Qu Y, Pang B, Wang L, Iqbal MS, Jamshed M, Sun J, Du XM (2018) Integration of conventional and advanced molecular tools to track footprints of heterosis in cotton. BMC Genom 19(1):776

    Article  Google Scholar 

  • Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–88

    Article  CAS  PubMed  Google Scholar 

  • Shen R, Wang L, Liu X, Wu J, Jin W, Zhao X, Xie X, Zhu Q, Tang H, Li Q, Chen L, Liu YG (2017) Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice. Nat Commun 8:1310

    Article  PubMed  PubMed Central  Google Scholar 

  • Simpson DM (1948) Hybrid vigor from natural crossing for improving cotton production. J Am Soc Agron 40:970–979

    Article  Google Scholar 

  • Stewart JM (1992) A new cytoplasmic male sterile and restorer for cotton. In: Proceedings Beltwide cotton production research conference, National Cotton Council, Memphis TN, p 610

  • Tang B, Jenkins JN, McCarty JC, Watson CE (1993) F2 hybrids of host plant germplasm and cotton cultivars: I. Heterosis and combining ability for lint yield and yield components. Crop Sci 33(4):700–705

    Article  Google Scholar 

  • Tang B, Jenkins JN, McCarty JC, Watson CE (1993) F2 hybrids of host plant germplasm and cotton cultivars: II. Heterosis and combining ability for fiber properties. Crop Sci 33(4):706–710

    Article  Google Scholar 

  • Tian SH, Xu X, Zhu XF, Wang F, Song XL, Zhang TZ (2019) Overdominance is the major genetic basis of lint yield heterosis in interspecific hybrids between G. hirsutum and G. barbadense. Heredity 123:384–394

    Article  PubMed  PubMed Central  Google Scholar 

  • Turcotte EL and CV Feaster (1979) Linkage tests in American Pima cotton. Crop Sci 19:119–120

  • Waller GD, Moffet JO, Loper GM, Martin JH (1985) An evaluation of honey bee foraging activity and pollination efficacy for male sterile cotton. Crop Sci 25:211–214

    Article  Google Scholar 

  • Wan X, Wu S, Li Z, Dong Z, An X, Ma B, Tian Y, Li J (2019) Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol Plant 12:321–342

    Article  CAS  PubMed  Google Scholar 

  • Wang XD (2000) Analyses of mitochondrial protein and DNA from cytoplasmic male sterile cotton. Acta Agron Sin 26:35–39

    Google Scholar 

  • Wang XD, Zhang TZ, Pan JJ (1997) Cytoplasmic effects of cytopplasmic male sterile Upland cotton. Acta Agron Sin 23:393–399

    Google Scholar 

  • Wang XD, Zhang TZ, Pan JJ (1998) Cytological observation of microsporogenesis and RAPD analysis of mitochondrial DNAs for cytoplasmic male sterile cotton lines. Sci Agric Sin 31:70–75

    CAS  Google Scholar 

  • Wang XD, Zhu YG, Zhao PO, Ni XY (2003) Relationship between glutathione S-transferase activity of restorer anthers and pollen fertility of F1 hybrid in Upland cotton. Acta Agron Sin 29:693–696

    Google Scholar 

  • Wang BH, Wu YT, Guo WZ, Zhu XF, Huang NT, Zhang TZ (2007a) QTL analysis and epistasis effects dissection of fiber qualities in an elite cotton hybrid grown in second generation. Crop Sci 47:1384–1392

    Article  CAS  Google Scholar 

  • Wang F, Stewart JM, Zhang J (2007b) Molecular markers linked to the Rf2 fertility restorer gene in cotton. Genome 50:818–824

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Feng C, O’Connell MA, Stewart JM, Zhang JF (2009a) RFLP analysis of mitochondrial DNA in two cytoplasmic male sterility systems (CMS-D2 and CMS-D8) of cotton. Euphytica 172:93–99

    Article  Google Scholar 

  • Wang F, Yue B, Hu J, Stewart JM, Zhang JF (2009b) A target region amplified polymorphism marker for fertility restorer gene Rf1 and chromosomal localization of Rf1 and Rf2 in cotton. Crop Sci 49:1602–1608

    Article  CAS  Google Scholar 

  • Wang GY (2007b) Sterile stability of four genetic male sterile lines and genetic male sterile gene localization in 1355A. Dissertation, Huazhong Agricultural University

  • Weaver JB Jr (1986). Performance of open pollinated cultivars, F2 and CMS Upland x Upland restorer strain. In: Proceedings Beltwide cotton production research conference, pp. 98–100

  • Weaver JB Jr (1987a) Performance of ms5–6 genetic male sterile vs sib-fertile plants. In: Proceedings Beltwide cotton production research conference, pp. 123–124

  • Weaver JB Jr (1987b) Performance of F2 hybrids produced through natural crossing with a dominant naked seed strain of cotton. In: Proceedings Beltwide cotton production research conference, pp. 118–119

  • Wei ZG, Li ZY, Hua JP, Yi XD (1995) Studies on effects of the male sterile cytoplasm of G. harknessii. Acta Gossypii Sin 7:78–82

    Google Scholar 

  • Wei M, Song M, Fan S, Yu S (2013) Transcriptomic analysis of differentially expressed genes during anther development in genetic male sterile and wild type cotton by digital gene-expression profiling. BMC Genom 14:97

    Article  CAS  Google Scholar 

  • Westhues M, Schrag TA, Heuer C, Thaller G, Utz HF, Schipprack W, Thiemann A, Seifert F, Ehret A, Schlereth A, Stitt M, Nikoloski Z, Willmitzer L, Schön CC, Scholten S, Melchinger AE (2017) Omics-based hybrid prediction in maize. Theor Appl Genet 130:1927–1939

    Article  CAS  PubMed  Google Scholar 

  • Wu YT, Yin JM, Guo WZ, Zhu XF, Zhang TZ (2004) Heterosis performance of yield and fiber quality in F1 and F2 hybrids in Upland cotton. Plant Breed 123(3):285–289

    Article  Google Scholar 

  • Wu J, Cao X, Guo L, Qi T, Wang H, Tang H, Zhang J, Xing C (2014) Development of a candidate gene marker for Rf1 based on a PPR gene in cytoplasmic male sterile CMS-D2 Upland cotton. Mol Breed 34:231–240

    Article  Google Scholar 

  • Wu Y, Min L, Wu Z, Yang L, Zhu L, Yang X, Yuan D, Guo X, Zhang XL (2015) Defective pollen wall contributes to male sterility in the male sterile line 1355A of cotton. Sci Rep 5:9608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Zhang M, Zhang X, Guo L, Qi T, Wang H, Tang H, Zhang J, Xing C (2017) Development of InDel markers for the restorer gene Rf1 and assessment of their utility for marker-assisted selection in cotton. Euphytica 213(11):1–8

    Article  CAS  Google Scholar 

  • Wu Y, Li X, Li Y, Ma H, Chi H, Ma Y, Yang J, Xie S, Zhang R, Liu L, Su X, Lv R, Khan AH, Kong J, Guo X, Lindsey K, Min L, Zhang XL (2022) Degradation of de-esterified pctin/homogalacturonan by the polygalacturonase GhNSP is necessary for pollen exine formation and male fertility in cotton. Plant Biotechnol J 20:1054–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Shen R, Chen L, Liu YG (2019) Molecular mechanisms of hybrid sterility in rice. Sci China Life Sci 62:737–743

    Article  PubMed  Google Scholar 

  • Xing YH, Jing SR, Zhang XH, Qiu J (1987) Studies on performance of F2 hybrids in cotton. China Cottons 14(2):12–15

    Google Scholar 

  • Xing CZ, Jing SL, Guo LP, Yuan YL, Liu SL, Wang HL (1999) Nuclear sterile ms5ms6 of Upland cotton resistant to cotton bollworm-Zhongkang A. China Cotton 26(6):27

    Google Scholar 

  • Xing CZ, Guo LP, Jing SL, Wang HL (2002) Study on heterosis and insect pollination of nuclear sterile of Upland cotton resistant to cotton bollworm-Zhongkang A. Acta Agron Sin 28:574–576

    Google Scholar 

  • Xing CZ, Guo LP, Miao CD, Wang HL, Lou BQ (2005) Study on effects of producing cotton hybrids by bees pollination. Cotton Sci 17:207–210

    Google Scholar 

  • Xing CZ, Guo LP, Li W, Wu JY, Yang DG, Qi TT, Ma XF, Zhang XX (2017) Ten-year achievements and future development of cotton heterosis utilization. Cotton Sci 29:28–36

    Google Scholar 

  • Xuan LS, Qi GA, Li X, Yan S, Cao Y, Huang C, He L, Zhang TZ, Shang H, Hu Y (2022) Comparison of mitochondrial genomes between a cytoplasmic male-sterile line and its restorer line for identifying candidate CMS genes in Gossypium hirsutum. Int J Mol Sci 23(16):9198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagishi H, Tanaka Y, Shiiba S, Hashimoto A, Fukunaga A, Terachi T (2019) Mitochondrial orf463 causing male sterility in radish is possessed by cultivars belonging to the ‘Niger’ group. Euphytica 215(6):1–8

    Article  Google Scholar 

  • Yang LM, Zhu HY, Guo WZ, Zhang TZ (2010) Molecular cloning and characterization of five genes encoding pentatricopeptide repeat proteins from Upland cotton (Gossypium hirsutum L.). Mol Biol Rep 37:801–808

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Li Y, Sun L, Shoaib M, Sun J, Wang D, Li X, Liu D, Zhan K, Zhang A (2021) Genetic mapping of ms1s, a recessive gene for male sterility in common wheat. Int J Mol Sci 22(16):8541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Xue Y, Li B, Lin Y, Li H, Guo Z, Li W, Fu Z, Ding D, Tang J (2022) The chimeric gene atp6c confers cytoplasmic male sterility in maize by impairing the assembly of the mitochondrial ATP synthase complex. Mol Plant 15:872–886

    Article  CAS  PubMed  Google Scholar 

  • Yin JM, Guo WZ, Yang LM, Liu LW, Zhang TZ (2006) Physical mapping of the Rf1 fertility-restoring gene to a 100 kb region in cotton. Theor Appl Genet 112:1318–1325

    Article  CAS  PubMed  Google Scholar 

  • You J, Li M, Li H, Bai Y, Zhu X, Kong X, Chen X, Zhou R (2022) Integrated methylome and transcriptome analysis widen the knowledge of cytoplasmic male sterility in cotton (Gossypium barbadense L.). Front Plant Sci 13:770098

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaidi SS, Naqvi RZ, Asif M, Strickler S, Shakir S, Shafiq M, Khan AM, Amin I, Mishra B, Mukhtar MS, Scheffler BE, Scheffler JA, Mueller LA, Mansoor S (2020) Molecular insight into cotton leaf curl geminivirus disease resistance in cultivated cotton (Gossypium hirsutum). Plant Biotechnol J 18:691–706

    Article  CAS  PubMed  Google Scholar 

  • Zhang TZ (1995) A discussion on the inheritance of Dong-A male sterility and its fertility-maintaining line(Mb) in Upland cotton. Hereditas (Beijing) 17(6):30–33

    Google Scholar 

  • Zhang TZ, Jing SL (1997) Theory and practice of hybrid cotton development via male sterile lines in cotton. China Agricultural Press, Beijing

    Google Scholar 

  • Zhang TZ, Pan JJ (1990) A genetic male sterile line with virescent marker character in Upland cotton. Euphytica 48:233–237

    Article  Google Scholar 

  • Zhang JF, Stewart JM (2001) Inheritance and genetic relationships of the D8 and D2–2 restorer genes for cotton cytoplasmic male sterility. Crop Sci 41:289–294

    Article  Google Scholar 

  • Zhang J, Stewart JM (2004) Identification of molecular markers linked to the fertility restorer genes for CMS-D8 in cotton. Crop Sci 44:1209–1217

    Article  CAS  Google Scholar 

  • Zhang TZ, Zhu XF (2004) Breeding and cultivation technology of Nannong6 (NAU6). China Cotton 31(8):18–19

    CAS  Google Scholar 

  • Zhang TZ, Zhu XF (2005) Breeding and cultivation technology of Nannong9 (NAU9). China Cotton 32(8):19

    Google Scholar 

  • Zhang TZ, Feng YJ, Pan JJ (1992) Genetic analysis of four genic male sterile line in Upland cotton. Acta Gossypii Sinica 4:1–8

    CAS  Google Scholar 

  • Zhang TZ, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp AM, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride RC, Chen X, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen ZJ (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Shi J, Yang X (2016) Role of lipid metabolism in plant pollen exine development. Subcell Biochem 86:315–337

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Zhang X, Guo L, Qi T, Wang H, Tang H, Qiao X, Shahzad K, Xing C, Wu J (2018) Genome-wide analysis of Rf-PPR-like (RFL) genes and a new InDel marker development for Rf1 gene in cytoplasmic male sterile CMS-D2 Upland cotton. J Cotton Res 1(1):1–11

    Google Scholar 

  • Zhang M, Liu J, Ma Q, Qin Y, Wang H, Chen P, Ma L, Fu X, Zhu L, Wei H, Yu S (2020) Deficiencies in the formation and regulation of anther cuticle and tryphine contribute to male sterility in cotton PGMS line. BMC Genom 21:825

    Article  CAS  Google Scholar 

  • Zhang Y, Han Y, Zhang M, Zhang X, Guo L, Qi T, Li Y, Feng J, Wang H, Tang H, Qiao X, Chen L, Song X, Xing C, Wu J (2022) The cotton mitochondrial chimeric gene orf610a causes male sterility by disturbing the dynamic balance of ATP synthesis and ROS burst. Crop J 10:1683–1694

    Article  Google Scholar 

  • Zhang TZ, Pan JJ (1999) Hybrid seed production in cotton. In: Basra RS (ed) Hybrid seed production in crops. Food Production Press, New York, USA, pp 149–184

    Google Scholar 

  • Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu P, Lu S, Li F, Zhu L, Liu Z, Chen L, Liu Y-G, Zhuang C (2012) Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res 22:649–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu XF, Wang XD, Sun J, Zhang TZ, Pan JJ (1998) Assessment of cytoplasmic effects of cytoplasmic male-sterile lines in upland cotton. Plant Breed 117:549–552

    Article  Google Scholar 

  • Zhu SJ, Tong XH, Hong CX, Ji DF, Wu W, Wang RH (2006) A new combination of three-line hybrid cotton “Zheza 2.” China Cottons 5:12–13

    Google Scholar 

  • Zhu CS, Wu JT, Zhou DG, Li Y, Peng FJ, Gong YC, Zhou SX (2013) Breeding and utilization of cotton cytoplasmic sterile line “Xiangyuan A.” China Cotton Association, Beijing, pp 192–194

    Google Scholar 

Download references

Acknowledgements

We would like express our gratitude to the late Prof. Pan Jiaju. Prof. Pan, the mentor of the corresponding author TZZ, first introduced cotton hetrosis research to the author. TZZ also thanks his many graduate students such as Feng YJ, Yuan YL, Wu YD, Liu LW, Wang BH, Zhu XX, Liu RZ, Yin JM, Yang LM, Chen DY for their contributions to this work during their scholastic research in Nanjing Agricultural University (NAU), and to his collegues at NAU: Associate Prof. Zhu XF, for his assistance to develop a series of NAU hybrids. The authors apologize to those whose work was not cited owing to space constraints.

Funding

This study is financially supported in part by grants from the NSFC (32130075), the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (2019R01002), and the Fundamental Research Funds for the Central Universities (226-2022-00100).

Author information

Authors and Affiliations

Authors

Contributions

TZ conceived and designed the research. TZ, LX, YM, and YH wrote and approved the manuscript.

Corresponding author

Correspondence to Tianzhen Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The corresponding author, Tianzhen Zhang, is a member of the journal’s editorial board.

Additional information

Communicated by David D Fang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Xuan, L., Mao, Y. et al. Cotton heterosis and hybrid cultivar development. Theor Appl Genet 136, 89 (2023). https://doi.org/10.1007/s00122-023-04334-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04334-w

Navigation