Skip to main content
Log in

Fine mapping of the tiller inhibition gene TIN5 in Triticum urartu

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A tiller inhibition gene TIN5 was delimited to an approximate 2.1 Mb region on chromosome Tu7 that contains 24 annotated genes.

Abstract

Grain yield in wheat (Triticum aestivum L.) is a polygenic trait representing many developmental processes and their interactions with the environments. Among them, tillering capacity is an important agronomic trait for plant architecture and grain yield, but the genetic basis of tiller formation in wheat remains largely unknown. In this study, we identified a tiller inhibition 5 (tin5) mutant from ethyl methane sulfonate treated G1812 (Triticum urartu Thumanjan ex Gandilyan). A mapping population was constructed with tin5/G3146. Based on the sequence differences between G1812 and G3146, large insertions and deletions (≥ 5 bp) were selected and verified, and a skeleton physical map was constructed with genome-wide 168 polymorphic InDel markers. Genetic analysis revealed that the low-tiller phenotype was controlled by a single recessive locus, which we named TIN5. This locus was mapped to a 2.1-Mb region that contained 24 annotated genes on chromosome Tu7. Among these annotated genes, only TuG1812G0700004539 showed a non-synonymous polymorphism between tin5 and the wild type. Our finding will facilitate its map-based cloning and pave the way for an in-depth analysis of the underlying genetic basis of tiller formation and regulation patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in the main text article and its supplementary files.

Code availability

Not applicable.

References

  • An J, Niu H, Ni Y, Jiang Y, Zheng Y, He R, Li J, Jiao Z, Zhang J, Li H, Li Q, Niu J (2019) The miRNA-mRNA networks involving abnormal energy and hormone metabolisms restrict tillering in a wheat mutant dmc. Int J Mol Sci 20:4586

    Article  CAS  PubMed Central  Google Scholar 

  • Cao J, Liu KY, Song WJ, Zhang JN, Yao YY, Xin MM, Hu ZR, Peng HR, Ni ZF, Sun QX, Du JK (2021) Pleiotropic function of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE gene TaSPL14 in wheat plant architecture. Planta 253:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee A, Moulik SP, Majhi R, Sanyal SK (2002) Studies on surfactant-biopolymer interaction. I. Microcalorimetric investigation on the interaction of cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS) with gelatin (Gn), lysozyme (Lz) and deoxyribonucleic acid (DNA). Biophys Chem 98:313–327

    Article  CAS  PubMed  Google Scholar 

  • Dixon LE, Greenwood JR, Benvivegna S, Zhang P, Cockram J, Mellers G, Ramm K, Cavanagh C, Swain SM, Boden SA (2018) TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum). Plant Cell 30:563–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon LE, Pasquariello M, Boden SA (2020) Teosinte branched1 regulates height and stem internode length in bread wheat. J Exp Bot 71:4742–4750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  CAS  PubMed  Google Scholar 

  • Elhani S, Martos V, Rharrabti Y, Royo C, Moral LFGd (2007) Contribution of main stem and tillers to durum wheat (Triticum turgidum L. var. durum) grain yield and its components grown in Mediterranean environments. Field Crop Res 103:25–35

    Article  Google Scholar 

  • FAOSTAT (2017) FAOSTAT https://www.fao.org/faostat/en/#data. Food and Agriculture Organization (FAO) of the United Nations

  • Hu YS, Ren TH, Li Z, Tang YZ, Ren ZL, Yan BJ (2017) Molecular mapping and genetic analysis of a QTL controlling spike formation rate and tiller number in wheat. Gene 634:15–21

    Article  CAS  PubMed  Google Scholar 

  • Hyles J, Vautrin S, Pettolino F, MacMillan C, Stachurski Z, Breen J, Berges H, Wicker T, Spielmeyer W (2017) Repeat-length variation in a wheat cellulose synthase-like gene is associated with altered tiller number and stem cell wall composition. J Exp Bot 68:1519–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IWGSC (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:earr7191

    Article  CAS  Google Scholar 

  • Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu HE, Wang Y, Li J (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504:401–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544

    Article  CAS  PubMed  Google Scholar 

  • Kebrom TH, Chandler PM, Swain SM, King RW, Richards RA, Spielmeyer W (2012) Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiol 160:308–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SR, Yang JI, Moon S, Ryu CH, An K, Kim KM, Yim J, An G (2009) Rice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria. Plant J 59:738–749

    Article  CAS  PubMed  Google Scholar 

  • Kuraparthy V, Shipa S, Dhaliwal HS (2007) Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet 114:285–294

    Article  CAS  PubMed  Google Scholar 

  • Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. Nature 422:618–621

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21:1512–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling H-Q, Ma B, Shi X, Liu H, Dong L, Sun H, Cao Y, Gao Q, Zheng S, Li Y, Yu Y, Du H, Qi M, Li Y, Lu H, Yu H, Cui Y, Wang N, Chen C, Wu H, Zhao Y, Zhang J, Li Y, Zhou W, Zhang B, Hu W, van Eijk MJT, Tang J, Witsenboer HMA, Zhao S, Li Z, Zhang A, Wang D, Liang C (2018) Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 557:424–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Cheng X, Liu P, Sun J (2017) miR156-targeted SBP-Box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat. Plant Physiol 174:1931–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Luo W, Qin N, Ding P, Zhang H, Yang C, Mu Y, Tang H, Liu Y, Li W (2018) A 55K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theor Appl Genet 131:2439–2450

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Tang H, Qu X, Liu H, Li C, Tu Y, Li S, Habib A, Mu Y, Dai S, Deng M, Jiang Q, Liu Y, Chen G, Wang J, Chen G, Li W, Jiang Y, Wei Y, Lan X, Zheng Y, Ma J (2020) A novel, major, and validated QTL for the effective tiller number located on chromosome arm 1BL in bread wheat. Plant Mol Biol 104:173–185

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Ren M, Peng P, Chun Y, Li L, Zhao J, Fang J, Peng L, Yan J, Chu J, Wang Y, Yuan S, Li X (2021) MIT1, encoding a 15-cis-ζ-carotene isomerase, regulates tiller number and stature in rice. J Genet Genomics 48:88–91

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Zhao D, Zhang C, Zhang Z, Xue S, Lin F, Kong Z, Tian D, Luo Q (2007) Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics 277:31–42

    Article  CAS  PubMed  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: A map reduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naruoka Y, Talbert LE, Lanning SP, Blake NK, Martin JM, Sherman JD (2011) Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat. Theor Appl Genet 123:1043–1053

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, Yen C, Yang JL (1998) Genetic control of oligo-culms in common wheat. Wheat Inf Serv 26:19–24

    Google Scholar 

  • Ren T, Hu Y, Tang Y, Li C, Yan B, Ren Z, Tan F, Tang Z, Fu S, Li Z (2018) Utilization of a Wheat55K SNP array for mapping of major QTL for temporal expression of the tiller number. Front Plant Sci 9:333

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards R (1988) A tiller inhibitor gene in wheat and its effect on plant growth. Austr J Agric Res 39:749–757

    Article  Google Scholar 

  • Sakuma S, Golan G, Guo Z, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S, Jinno H, Yamashita Y, Ayalon I, Peleg Z, Schnurbusch T, Komatsuda T (2019) Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc Natl Acad Sci 116:5182–5187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si Y, Zheng S, Niu J, Tian S, Shi X, He Y, Li Y, Ling H-Q (2021) Fine mapping of hybrid necrosis gene Ne1 in common wheat (Triticum aestivum L.). Theor Appl Genet 134:2603–2611

    Article  CAS  PubMed  Google Scholar 

  • Spielmeyer W, Richards R (2004) Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theor Appl Genet 109:1303–1310

    Article  CAS  PubMed  Google Scholar 

  • Toda T, Fujii S, Noguchi K, Kazama T, Toriyama K (2012) Rice MPR25 encodes a pentatricopeptide repeat protein and is essential for RNA editing of nad5 transcripts in mitochondria. Plant J 72:450–460

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Shi H, Yu S, Zhou W, Li J, Liu S, Deng M, Ma J, Wei Y, Zheng Y, Liu Y (2019) Comprehensive transcriptomics, proteomics, and metabolomics analyses of the mechanisms regulating tiller production in low-tillering wheat. Theor Appl Genet 132:2181–2193

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wu F, Chen X, Zhou W, Shi H, Lin Y, Hou S, Yu S, Zhou H, Li C, Liu Y (2021) Fine mapping of the tiller inhibition gene TIN4 contributing to ideal plant architecture in common wheat. Theor Appl Genet 135:527–535

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Bian NF, Wen MX, Xiao J, Yuan CX, Cao AZ, Zhang SZ, Wang XE, Wang HY (2017) Characterization of a common wheat (Triticum aestivum L.) high-tillering dwarf mutant. Theor Appl Genet 130:483–494

    Article  CAS  PubMed  Google Scholar 

  • Yao FQ, Li XH, Wang H, Song YN, Li ZQ, Li XG, Gao X-Q, Zhang XS, Bie XM (2021) Down-expression of TaPIN1s increases the tiller number and grain yield in wheat. BMC Plant Biol 21:443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu K, Liu D, Wu W, Yang W, Zhang A (2016) Development of an integrated linkage map of einkorn wheat and its application for QTL mapping and genome sequence anchoring. Theor Appl Genet 130:53–70

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Liu X, Xu W, Chang J, Li A, Mao X, Zhang X, Jing R (2015) Novel function of a putative MOC1 ortholog associated with spikelet number per spike in common wheat. Sci Rep 5:12211

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang JP, Wu J, Liu WH, Lu X, Yang XM, Gao AN, Li XQ, Lu YQ, Li LH (2013) Genetic mapping of a fertile tiller inhibition gene, ftin, in wheat. Mol Breeding 31:441–449

    Article  CAS  Google Scholar 

  • Zhang L, He G, Li Y, Yang Z, Liu T, Xie X, Kong X, Sun J (2021) PIL transcription factors directly interact with SPLs and repress tillering/branching in plants. New Phytol 233:1414–1425

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, van Dijk ADJ, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, Smith SM, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester HJ (2014) Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol 10:1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Wu TT, Ma SS, Jiang DJ, Bie XM, Sui N, Zhang XS, Wang F (2019) TaD27-B gene controls the tiller number in hexaploid wheat. Plant Biotechnol J 18:513–525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao DH, Yang L, Xu KJ, Cao SH, Tian YB, Yan J, He ZH, Xia XC, Song XY, Zhang Y (2020) Identification and validation of genetic loci for tiller angle in bread wheat. Theor Appl Genet 133:3037–3047

    Article  CAS  PubMed  Google Scholar 

  • Zou S, Wang H, Li Y, Kong Z, Tang D (2018) The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol 218:298–309

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was jointly supported by grants from the National Natural Science Foundation of China (31971877) and the Strategic Priority Research Program of Chinese Academy of Sciences (grant no. XDA24010104-1).

Author information

Authors and Affiliations

Authors

Contributions

SZ and YS developed the mapping populations; YS, QL, ST, and JN carried out the experiments and analyzed the data; ST analyzed the candidate genes; MC and XL assisted in phenotyping, genotyping and field work; QG and XS analyzed the data of re-sequencing; YS wrote the manuscript; H-Q L and SZ designed the project and revised the manuscript.

Corresponding authors

Correspondence to Hong-Qing Ling or Shusong Zheng.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Takao Komatsuda.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, Y., Lu, Q., Tian, S. et al. Fine mapping of the tiller inhibition gene TIN5 in Triticum urartu. Theor Appl Genet 135, 2665–2673 (2022). https://doi.org/10.1007/s00122-022-04140-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04140-w

Navigation