Skip to main content

Advertisement

Log in

Scaling up high-throughput phenotyping for abiotic stress selection in the field

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

High-throughput phenotyping (HTP) is in its infancy for deployment in large-scale breeding programmes. With the ability to measure correlated traits associated with physiological ideotypes, in-field phenotyping methods are available for screening of abiotic stress responses. As cropping environments become more hostile and unpredictable due to the effects of climate change, the need to characterise variability across spatial and temporal scales will become increasingly important. The sensor technologies that have enabled HTP from macroscopic through to satellite sensors may also be utilised here to complement spatial characterisation using envirotyping, which can improve estimations of genotypic performance across environments by better accounting for variation at the plot, trial and inter-trial levels.

Abstract

Climate change is leading to increased variation at all physical and temporal scales in the cropping environment. Maintaining yield stability under circumstances with greater levels of abiotic stress while capitalising upon yield potential in good years, requires approaches to plant breeding that target the physiological limitations to crop performance in specific environments. This requires dynamic modelling of conditions within target populations of environments, GxExM predictions, clustering of environments so breeding trajectories can be defined, and the development of screens that enable selection for genetic gain to occur. High-throughput phenotyping (HTP), combined with related technologies used for envirotyping, can help to address these challenges. Non-destructive analysis of the morphological, biochemical and physiological qualities of plant canopies using HTP has great potential to complement whole-genome selection, which is becoming increasingly common in breeding programmes. A range of novel analytic techniques, such as machine learning and deep learning, combined with a widening range of sensors, allow rapid assessment of large breeding populations that are repeatable and objective. Secondary traits underlying radiation use efficiency and water use efficiency can be screened with HTP for selection at the early stages of a breeding programme. HTP and envirotyping technologies can also characterise spatial variability at trial and within-plot levels, which can be used to correct for spatial variations that confound measurements of genotypic values. This review explores HTP for abiotic stress selection through a physiological trait lens and additionally investigates the use of envirotyping and EC to characterise spatial variability at all physical scales in METs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Acknowledgements

This research was supported by UQ and funds from the Grains Research and Development Corporation (GRDC) as a part of the UOQ2003-011RTX. DS is a recipient of an Australian Government Research Training Program (RTP) scholarship together with a PhD top-up scholarship from GRDC.

Author information

Authors and Affiliations

Authors

Contributions

DS and SC designed the review; DS wrote the manuscript; and SC, DS and AP revised the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Scott C. Chapman.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, D.T., Potgieter, A.B. & Chapman, S.C. Scaling up high-throughput phenotyping for abiotic stress selection in the field. Theor Appl Genet 134, 1845–1866 (2021). https://doi.org/10.1007/s00122-021-03864-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03864-5

Navigation