Skip to main content
Log in

Reinvestigation of THOUSAND-GRAIN WEIGHT 6 grain weight genes in wheat and rice indicates a role in pollen development rather than regulation of auxin content in grains

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Phylogenetic and expression analyses of grain weight genes TaTGW6 and OsTGW6 and investigation of substrate availability indicate TGW6 does not regulate auxin content of grains but may affect pollen development.

Abstract

The THOUSAND-GRAIN WEIGHT 6 genes (TaTGW6 and OsTGW6) are reported to result in larger grains of wheat and rice by reducing production of indole-3-acetic acid (IAA) in developing grains. However, a critical comparison of data on TaTGW6 and OsTGW6 with other reports on IAA synthesis in cereal grains requires that this hypothesis be reinvestigated. Here, we show that TaTGW6 and OsTGW6 are members of a large gene family that has undergone major, lineage-specific gene expansion. Wheat has nine genes, and rice three genes encoding proteins with more than 80% amino acid identity with TGW6, making it difficult to envisage how a single inactive allele could have a major effect on IAA levels in grains. In our study, we show that neither TaTGW6 nor OsTGW6 is expressed in developing grains. Instead, both genes and their close homologues are exclusively expressed in pre-emergent inflorescences; TaTGW6 is expressed particularly in microspores prior to mitosis. This evidence, combined with our observation that developing wheat grains have undetectable levels of ester IAA in comparison to free IAA and do not express an IAA–glucose synthase suggests that TaTGW6 and OsTGW6 do not regulate grain size via the hydrolysis of IAA–glucose. Instead, their similarity to rice strictosidine synthase-like (OsSTRL2) suggests they play a key role in pollen development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abu-Zaitoon YM, Bennett K, Normanly J, Nonhebel HM (2012) A large increase in IAA during development of rice grains correlates with the expression of tryptophan aminotransferase OsTAR1 and a grain-specific YUCCA. Physiologia Plant 146:487–499

    Article  CAS  Google Scholar 

  • Appels R et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:6403

    Google Scholar 

  • Bandurski RS, Schulze A (1977) Concentration of indole-3-acetic acid and its derivatives in plants. Plant Physiol 60:211–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basunia MA, Nonhebel HM (2019) Hormonal regulation of cereal endosperm development with a focus on rice (Oryza sativa). Funct Plant Biol 46:493–506

    Article  CAS  PubMed  Google Scholar 

  • Beral A, Rincent R, Le Gouis J, Girousse C, Allard V (2020) Wheat individual grain-size variance originates from crop development and from specific genetic determinism. PLoS ONE 15:e0230689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardi J, Lanubile A, Li QB, Kumar D, Kladnik A, Cook SD, Ross JJ, Marocco A, Chourey PS (2012) Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize. Plant Physiol 160:1318–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrill P, Ramirez-Gonzalez R, Uauy C (2016) expVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol 170:2172–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinton J, Uauy C (2019) A reductionist approach to dissecting grain weight and yield in wheat. J Intgr Plant Biol 61:337–358

    Article  Google Scholar 

  • Cao J, Li G, Qu D, Li X, Wang Y (2020) Into the seed: auxin controls seed development and grain yield. Int J Mol Sci 21:1662

    Article  CAS  PubMed Central  Google Scholar 

  • Chen KH, Miller AN, Patterson GW, Cohen JD (1988) A rapid and simple procedure for purification of indole-3-acetic acid prior to GC-SIM-MS analysis. Plant Physiol 86:822–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi MS, Koh EB, Woo MO, Piao R, Oh CS, Koh HJ (2012) Tiller formation in rice is altered by overexpression of OsIAGLU gene encoding an IAA-conjugating enzyme or exogenous treatment of free IAA. J Plant Biol 55:429–435

    Article  Google Scholar 

  • Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, Pingault L, Sourdille P, Couloux A, Paux E, Leroy P, Mangenot S, Guilhot N, Gouis JL, Balfourier F, Alaux M, Jamilloux V, Poulain J, Durand C, Bellec A, Gaspin C, Safar J, Dolezel J, Rogers J, Vandepoele K, Aury J-M, Mayer K, Berges H, Quesneville H, Wincker P, Feuillet C (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science 345:1249721

    Article  PubMed  Google Scholar 

  • Cohen JD, Bandurski RS (1982) Chemistry and physiology of the bound auxins. Ann Rev Plant Physiol 33:403–430

    Article  CAS  Google Scholar 

  • Dash S, Van Hemert J, Hong L, Wise RP, Dickerson JA (2011) PLEXdb: gene expression resources for plants and plant pathogens. Nucleic Acids Res 40:D1194–D1201

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emery LR, Morgan SL (2017) The application of project-based learning in bioinformatics training. PLoS Comput Biol 13:e1005620

    Article  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Guo T, Chen K, Dong NQ, Ye WW, Shan JX, Lin HX (2019) Tillering and small grain 1 dominates the tryptophan aminotransferase family required for local auxin biosynthesis in rice. J Integr Plant Biol 62:581–600

    Article  PubMed  Google Scholar 

  • Gupta PK, Balyan HS, Sharma S, Kumar R (2020) Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). Theor Appl Genet 133:1569–1602

    Article  PubMed  Google Scholar 

  • He Y, Zhao J, Yang B, Sun S, Peng L, Wang Z (2020) Indole-3-acetate beta-glucosyltransferase OsIAGLU regulates seed vigour through mediating crosstalk between auxin and abscisic acid in rice. Plant Biotech J 18:1933–1945

    Article  CAS  Google Scholar 

  • Hu MJ, Zhang HP, Cao JJ, Zhu XF, Wang SX, Jiang H, Wu ZY, Lu J, Cheng C, Sun GL, Ma CX (2016a) Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Mol Breed 36:1–11

    Article  Google Scholar 

  • Hu MJ, Zhang HP, Liu K, Cao JJ, Wang SX, Jiang H, Wu ZY, Lu J, Zhu XF, Xia XC, Sun GL, Ma CX, Chang C (2016b) Cloning and characterization of TaTGW-7A gene associated with grain weight in wheat via SLAF-seq-BSA. Front Plant Sci 7:1902

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genet 45:707–711

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8:275–282

    Article  CAS  Google Scholar 

  • Kabir MR, Backhouse D, Winter G, Nonhebel HM (2020) Expression of TaTAR2.3-1B, TaYUC9-1 and TaYUC10 correlates with auxin and starch content of developing wheat grains. bioRxiv. https://doi.org/https://doi.org/10.1101/2020.10.12.336560

  • Kawahara Y, Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou J, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kersey PJ, Allen JE, Armean I, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Falin LJ, Grabmueller C, Humphrey J, Kerhornou A, Khobova J, Aranganathan NK, Langridge N, Lowy E, McDowall MD, Maheswari U, Nuhn M, Ong CK, Overduin B, Paulini M, Pedro H, Perry E, Spudich G, Tapanari E, Walts B, Williams G, Tello-Ruiz M, Stein J, Wei S, Ware D, Bolser DM, Howe KL, Kulesha E, Lawson D, Maslen G, Staines DM (2015) Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Res 44:D574–D580

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Mantovani EE, Simsek S, Jain S, Elias EM, Mergoum M (2019) Genome wide genetic dissection of wheat quality and yield related traits and their relationship with grain shape and size traits in an elite × non-adapted bread wheat cross. PLoS ONE 14:e0221826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Li Y (2016) Signaling pathways of seed size control in plants. Curr Opin Plant Biol 33:23–32

    Article  PubMed  Google Scholar 

  • Li N, Yin N, Niu Z, Hui W, Song J, Huang C, Wang H, Kong L, Febg D (2014) Isolation and characterization of three TaYUC10 genes from wheat. Gene 546:187–194

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Tong H, Xiao Y, Che R, Xu F, Hu B, Liang C, Chu J, Li J, Chu C (2015) Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci 112:11102–11107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582

    Article  CAS  PubMed  Google Scholar 

  • Nonhebel HM, Griffin K (2020) Production and roles of IAA and ABA during development of superior and inferior rice grains. Funct Plant Biol 47:716–726

    Article  CAS  PubMed  Google Scholar 

  • RamírezGonzález RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, Ex F, Pasha A, Khedikar Y, Robinson SJ, Cory AT, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout CJ, Chalhoub B, Mayer KFX, Benhamed M, Latrasse D, Bendahmane A, International Wheat Genome Sequencing Consortium, Wulff BBH, Appels R, Tiwari V, Datla R, Choulet F, Pozniak CJ, Provart NJ, Sharpe AG, Paux E, Spannagl M, Bräutigam A, Uauy C (2018) The transcriptional landscape of polyploid wheat. Science 361:6089

    Article  Google Scholar 

  • Seifert F, Bössow S, Kumlehn J, Gnad H, Scholten S (2016) Analysis of wheat microspore embryogenesis induction by transcriptome and small RNA sequencing using the highly responsive cultivar “Svilena.” BMC Plant Biol 16:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao A, Ma W, Zhao X, Hu M, He X, Teng W, Li H, Tong Y (2017) The auxin biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A increases wheat grain yield. Plant Physiol 174:2274–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukumaran S, Lopes M, Dreisigacker S, Reynolds M (2018) Genetic analysis of multi-environmental spring wheat trials identifies genomic regions for locus-specific trade-offs for grain weight and grain number. Theor Appl Genet 131:985–998

    Article  CAS  PubMed  Google Scholar 

  • Szerszen JB, Szczyglowski K, Bandurski RS (1994) iaglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acid. Science 265:1699–1701

    Article  CAS  PubMed  Google Scholar 

  • Zou T, Li S, Liu M, Wang T, Xiao Q, Chen D, Li Q, Liang Y, Zhu J, Liang Y, Deng Q, Wang S, Zheng A, Wang L, Li P (2017) An atypical strictosidine synthase, OsSTRL2, plays key roles in anther development and pollen wall formation in rice. Sci Rep 7:6863

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Kirsten Drew for the analysis of IAA. The authors also acknowledge the Australian Government for providing a Research Training Program (RTP) PhD scholarship to Muhammed Rezwan Kabir.

Funding

The research was supported by a Research Training Program (RTP) scholarship provided to Muhammed Rezwan Kabir by the Australian Government.

Author information

Authors and Affiliations

Authors

Contributions

MRK and HMN conceived and designed the research. MRK performed all the experiments. MRK and HMN wrote the manuscript. Both authors read and approved the manuscript.

Corresponding author

Correspondence to Heather M. Nonhebel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 469 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, M.R., Nonhebel, H.M. Reinvestigation of THOUSAND-GRAIN WEIGHT 6 grain weight genes in wheat and rice indicates a role in pollen development rather than regulation of auxin content in grains. Theor Appl Genet 134, 2051–2062 (2021). https://doi.org/10.1007/s00122-021-03804-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03804-3

Navigation