Skip to main content

Advertisement

Log in

Genetic dissection of drought resistance based on root traits at the bud stage in common bean

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A whole-genome resequencing-derived SNP dataset used for genome-wide association analysis revealed 196 loci significantly associated with drought stress based on root traits. Candidate genes identified in the regions of these loci include homologs of known drought resistance genes in A. thaliana.

Abstract

Drought is the main abiotic constraint of the production of common bean. Improved adaptation to drought environments has become a main goal of crop breeding due to the increasing scarcity of water that will occur in the future. The overall objective of our study was to identify genomic regions associated with drought resistance based on root traits using genome-wide association analysis. A natural population of 438 common bean accessions was evaluated for root traits: root surface area, root average diameter, root volume, total root length, taproot length, lateral root number, root dry weight, lateral root length, special root weight/length, using seed germination pouches under drought conditions and in well-watered environments. The coefficient of variation ranged from 11.24% (root average diameter) to 38.19% (root dry weight) in the well-watered environment and from 9.61% (root average diameter) to 39.05% (lateral root length) under drought stress. A whole-genome resequencing-derived SNP dataset revealed 196 loci containing 230 candidate SNPs associated with drought resistance. Seventeen candidate SNPs were simultaneously associated with more than two traits. Forty-one loci were simultaneously associated with more than two traits, and eleven loci were colocated with loci previously reported to be related to drought resistance. Candidate genes of the associated loci included the ABA-responsive element-binding protein family, MYB, NAC, the protein kinase superfamily, etc. These results revealed promising alleles linked to drought resistance or root traits, providing insights into the genetic basis of drought resistance and roots, which will be useful for common bean improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Data supporting the current study can be obtained by contacting the corresponding author (wangshumin@caas.cn).

Code availability

Not applicable.

Abbreviations

GWAS:

Genome-wide association study

SNP:

Single nucleotide polymorphisms

CHR:

Chromosome

LD:

Linkage disequilibrium

QTL:

Quantitative trait loci

ABA:

Abscisic acid

RSA:

Root surface area

RAD:

Root average diameter

RV:

Root volume

TRL:

Total root length

TL:

Taproot length

LRN:

Lateral root number

RDW:

Root dry weight

LRL:

Lateral root length

SRL:

Special root weight/length

References

  • Armengaud P, Zambaux K, Hills A, Sulpice R, Pattison RJ, Blatt MR, Amtmann A (2009) EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture. Plant J 57:945–956

    Article  CAS  PubMed  Google Scholar 

  • Asfaw A, Blair MW (2012) Quantitative trait loci for rooting pattern traits of common beans grown under drought stress versus non-stress conditions. Mol Breed 30:681–695

    Article  Google Scholar 

  • Asfaw A, Blair MW, Struik PC (2012) Multienvironment quantitative trait loci analysis for photosynthate acquisition accumulation and remobilization traits in common bean under drought stress. G3 2:579–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plant: recent advances. Biotechnol Advs 28:169–183

    Article  CAS  Google Scholar 

  • Beebe S (2012) Common bean breeding in the tropics. Plant Breed Rev 36:357–426

    Google Scholar 

  • Beebe SE, Rojas-Pierce M, Yan X, Blair MW, Pedraza F, Munoz F, Tohme J, Lynch JP (2006) Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci 46:413–423

    Article  CAS  Google Scholar 

  • Beebe S, Rao IM, Cajiao C, Grajales M (2008) Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Sci 48:582–592

    Article  Google Scholar 

  • Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA (2013) Phenotyping common beans for adaptation to drought. Front Physiol 4:1–20

    Article  CAS  Google Scholar 

  • Berny Mier Y, Teran JC, Konzen ER, Medina V, Palkovic A, Ariani A, Tsai SM, Gilbert ME, Gepts P (2019) Root and shoot variation in relation to potential intermittent drought adaptation of Mesoamerican wild common bean (Phaseolus vulgaris L.). Ann Bot 124:917–932

    Article  Google Scholar 

  • Blair MW, Galeano CH, Tovar E, Torres MCM, Castrillón AV, Beebe SE (2012) Development of a Mesoamerican intra-gene pool genetic map for quantitative trait loci detection in a drought tolerant. Mol Breed 29:71–88

    Article  PubMed  Google Scholar 

  • Boris B, Cardoso PJMK, Santa RJ, Denis B, Ribeiro GJG, Caléo A (2017) Mapping QTLs for drought tolerance in a SEA5×AND277 common bean cross with SSRs and SNP markers. Genet Mol Bio 40:813–823

    Article  CAS  Google Scholar 

  • Broughton WJ, Hernandez G, Blair MW, Beebe SE, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)—model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Cantero A, Barthakur S, Bushart TJ, Chou S, Morgan RO, Fernandez MP, Clark GB, Roux SJ (2006) Expression profiling of the Arabidopsis annexin gene family during germination, de-etiolation and abiotic stress. Plant Physiol Biochem 44:13–24

    Article  CAS  PubMed  Google Scholar 

  • Chapman K, Taleski M, Ogilvie HA, Imin N, Djordjevic MA (2019) CEP-CEPR1 signalling inhibits the sucrose-dependent enhancement of lateral root growth. J Exp Bot 70:3955–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JB, Yang JW, Zhang ZY, Feng XF, Wang SM (2013) Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis. J Genet 92:461–469

    Article  CAS  PubMed  Google Scholar 

  • Cichy KA, Snapp SS, Blair MW (2009) Plant growth habit, root architecture traits and tolerance to low soil phosphorus in an Andean bean population. Euphytica 165:257–268

    Article  CAS  Google Scholar 

  • Cui M, Zhang W, Zhang Q, Xu Z, Zhu Z, Duan F, Wu R (2011) Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiol Biochem 49:1384–1391

    Article  CAS  PubMed  Google Scholar 

  • Devaiah BN, Karthikeyan AS, Raghothama KG (2007) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 143:1789–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Z, Yan J, Xu X, Yu D, Li G, Zhang S, Zheng S (2014) Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis. Plant J 79:13–27

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi SL, Sahrawat KL, Rai KN, Blair MW, Pfeiffer W (2012) Nutritionally enhanced staple food crops. Plant Breed Rev 36:169–291

    Google Scholar 

  • Emiliano VP, González-Chavira Mario M, Patricia GC, Acosta-Gallegos JA, Juan C-P (2015) Identification of novel drought-tolerant-associated SNPs in common bean (Phaseolus vulgaris). Front Plant Sci 6:546

    Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689

    Article  CAS  PubMed  Google Scholar 

  • Frahm MA, Rosas JC, Mayek-Pérez N, López-Salinas E, Acosta-Gallegos JA, Kelly JD (2004) Breeding beans for resistance to terminal drought in the lowland tropics. Euphytica 136:223–232

    Article  Google Scholar 

  • Fujii H, Verslues PE, Zhu JK (2011) Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci U S A 108:1717–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053–1057

    Article  CAS  PubMed  Google Scholar 

  • German MA, Burdman S, Okon Y, Kigel J (2000) Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol Fert Soils 32:259–264

    Article  Google Scholar 

  • Gupta A, Rico-Medina A, Caño-Delgado AI (2020) The physiology of plant responses to drought. Science 368:266–269

    Article  CAS  PubMed  Google Scholar 

  • Hagerty CH, Cuesta-Marcos A, Cregan PB, Song Q, McClean P, Noffsinger S, Myers JR (2015) Mapping and root rot resistance and root architecture quantitative trait loci in common bean. Crop Sci 55:1969–1977

    Article  CAS  Google Scholar 

  • He G, Xu J, Wang Y, Liu J, Li P, Chen M, Ma Y, Xu Z (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16:116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoyos-Villegas V, Song Q, Kelly JD (2017) Genome-wide association analysis for drought tolerance and associated traits in common bean. Plant Genome. https://doi.org/10.3835/plantgenome2015.12.0122

    Article  PubMed  Google Scholar 

  • Hu Z, Wang R, Zheng M, Liu X, Sun Q (2018) TaWRKY51 promotes lateral root formation through negatively regulating ethylene biosynthesis in wheat (Triticum aestivum L.). Plant J 96:372–388

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Gao H (2000) Root physiological characteristics associated with drought resistance in tall fescue cultivars. Crop Sci 40:196–203

    Article  Google Scholar 

  • Jin X, Xue Y, Wang R, Xu R, Bian L, Zhu B, Han H, Peng R, Yao Q (2012) Transcription factor OsAP21 gene increases salt/drought tolerance in transgenic Arabidopsis thaliana. Mol Biol Rep 40:1743–1752

    Article  PubMed  CAS  Google Scholar 

  • Kamoshita A, Babu RC, Manikanda Boopathi N, Fukai S (2008) Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Res 109:1–23

    Article  Google Scholar 

  • Kim JH, Nguyen NH, Jeong CY, Nguyen NT, Hong SW, Lee H (2013) Loss of the R2R3 MYB, AtMyb73, causes hyper-induction of the SOS1 and SOS3 genes in response to high salinity in Arabidopsis. J Plant Physiol 170:1461–1465

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Mishra AK, Muthamilarasan M, Bonthala VS, Khan Y, Prasad M (2014) Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.). PLoS ONE 9:e113092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee SB, Suh MC (2015) Cuticular wax biosynthesis is up-regulated by the MYB94 transcription factor in Arabidopsis. Plant Cell Physiol 56:48–60

    Article  CAS  PubMed  Google Scholar 

  • Li J, Kinoshita T, Pandey S, Ng KY, Gygi SP, Shimazaki KI (2002) Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase. Nature 418:793–797

    Article  CAS  PubMed  Google Scholar 

  • Li F, Asami T, Wu X, Tsang EW, Cutler AJ (2007) A putative hydroxysteroid dehydrogenase involved in regulating plant growth and development. Plant Physiol 145:87–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Wang L, Wu J, Jing R, Wang S (2013) Drought tolerance in common bean germplasm at bud stage. J Plant Genet Res 14:600–605

    Google Scholar 

  • Li X, Guo Z, Lv Y, Cen X, Ding X, Wu H, Li X, Huang J, Xiong L (2017) Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study. PLoS Genet 13:e1006889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Mao X, Wang J, Chang X, Matthew R, Jing R (2019a) Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant Cell Environ 42:1–14

    Article  Google Scholar 

  • Li L, Peng Z, Mao X, Wang J, Chang X, Matthew R, Jing R (2019b) Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Ann Bot 124:993–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Liu C, Zhang Y, Wang B, Ran Q, Zhang J (2019c) The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis. J Exp Bot 70:5471–5486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao H, Rubio G, Yan X, Cao A, Brown KM, Lync JP (2001) Effect of phosphorus availability on basal root shallowness in common bean. Plant Soil 232:69–79

    Article  CAS  PubMed  Google Scholar 

  • Liao H, Yan X, Rubio G, Beebe S, Blair M, Lynch J (2004) Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Funct Plant Biol 33:959–970

    Article  CAS  Google Scholar 

  • Lin C, Choi HS, Cho HT (2011) Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis. Mol Cells 3:393–397

    Article  CAS  Google Scholar 

  • Liu Y, Wu Y, Huang X, Sun J, Xie Q (2011) AtPUB19, a U-box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in Arabidopsis thaliana. Mol Plant 4:938–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Tai H, Li S, Gao W, Zhao M, Xie C, Li W (2014) bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol 201:1192–1204

    Article  CAS  PubMed  Google Scholar 

  • Mabuchi K, Maki H, Itaya T, Suzuki T, Nomoto M, Sakaoka S, Morikami A, Higashiyama T, Tada Y, Busch W, Tsukagoshi H (2018) MYB30 links ROS signaling, root cell elongation, and plant immune responses. Proc Natl Acad Sci U S A 115:E4710–E4719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao X, Chen S, Li A, Zhai C, Jing R (2014) Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS ONE 9:e84359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mao H, Wang H, Liu S, Li Z, Yang X, Yan J, Li J, Tran LS, Qin F (2015) A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun 6:8326

    Article  CAS  PubMed  Google Scholar 

  • Mukeshimana G, Butare G, Cregan P, Blair MW, Kelly JD (2014) Identification of quantitative trait loci associated with drought tolerance in common bean using SNP markers. Crop Sci 54:923–938

    Article  Google Scholar 

  • Mun˜oz-Perea CG, Teran H, Allen RG, Wright JL, Westermann DT, Singh SP (2006) Selection for drought resistance in dry bean landraces and cultivars. Crop Sci 46:2111–2120

    Article  Google Scholar 

  • Ochoa I, Blair MW, Lynch J (2006) QTL analysis of adventitious root formation in common bean under contrasting phosphorus availability. Crop Sci 46:1609–1621

    Article  CAS  Google Scholar 

  • Ortiz-Masia D, Perez-Amador MA, Carbonell J, Marcote MJ (2007) Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis. FEBS Lett 2581:1834–1840

    Article  CAS  Google Scholar 

  • Park MY, Kim SY (2014) The Arabidopsis J protein AtJ1 is essential for seedling growth, flowering time control and ABA response. Plant Cell Physiol 55:2152–2163

    Article  CAS  PubMed  Google Scholar 

  • Park HY, Seok HY, Park BK, Kim SH, Goh CH, Lee BH, Lee CH, Moon YH (2008) Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress. Biochem Biophys Res Commun 375:80–85

    Article  CAS  PubMed  Google Scholar 

  • Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J (2010) The impacts of climate change on water resources and agriculture in china. Nature 467:43–51

    Article  CAS  PubMed  Google Scholar 

  • Podia V, Milioni D, Martzikou M, Haralampidis K (2018) The role of Arabidopsis thaliana RASD1 gene in ABA-dependent abiotic stress response. Plant Biol (Stuttg) 20:307–317

    Article  CAS  Google Scholar 

  • Priest DM, Ambrose SJ, Vaistij Fabián E, Elias L, Bowles DJ (2010) Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. Plant J 46:492–502

    Article  CAS  Google Scholar 

  • Pruthvi V, Narasimhan R, Nataraja KN (2014) Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.). PLoS One 9:e111152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin Y, Tian Y, Liu X (2015) A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun 464:428–433

    Article  CAS  PubMed  Google Scholar 

  • Ramegowda V, Gill US, Sivalingam PN, Gupta A, Gupta C, Govind G, Nataraja KN, Pereira A, Udayakumar M, Mysore KS, Senthil-Kumar M (2017) GBF3 transcription factor imparts drought tolerance in Arabidopsis thaliana. Sci Rep 7:9148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao IM (2001) Role of physiology in improving crop adaptation to abiotic stresses in the tropics: the case of common bean and tropical forages. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker Inc, New York, pp 583–613

    Google Scholar 

  • Ré DA, Capella M, Bonaventure G (2014) Arabidopsis AtHB7 and AtHB12 evolved divergently to fine tune processes associated with growth and responses to water stress. BMC Plant Biol 14:1–14

    Article  CAS  Google Scholar 

  • Remans R, Beebe S, Blair MW, Manrique G, Tovar E, Rao IM, Croonenborghs A, Torres-Gutierrez R, El-Howeity M, Michiels J, Vanderleyden J (2008) Physiological and genetic analyses of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161

    Article  CAS  Google Scholar 

  • Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao D, Abernathy B, Barry K, Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL, Jia G, Kelly JD, Kudrna D, Lee R, Richard MM, Miklas PN, Osorno JM, Rodrigues J, Thareau V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson SA (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider KA, Brothers ME, Kelly JD (1997) Marker-assisted selection to improve drought resistance in common bean. Crop Sci 37:51

    Article  CAS  Google Scholar 

  • Söderman E, Mattsson J, Engstrm P (1996) The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J 10:375–381

    Article  PubMed  Google Scholar 

  • Shin R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guilfoyle TJ, Schachtman DP (2007) The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell 19:2440–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smucker AJM, Nunez-Barrios A, Ritchie JT (1991) Root dynamics in drying soil environments. Below-ground Ecol 1:1–5

    Google Scholar 

  • Sponchiado BN, White JW, Castillo JA, Jones PG (1989) Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types. Exp Agr 25:249–257

    Article  Google Scholar 

  • Strizhov N, Abrahám E, Okrész L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569

    CAS  PubMed  Google Scholar 

  • Sun Z, Wang X, Liu Z, Gu Q, Zhang Y, Li Z, Ke H, Yang J, Wu J, Wu L (2017) Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. Plant Biotechnol J 15:982–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sura W, Kabza M, Karlowski WM, Bieluszewski T, Kus-Slowinska M, Pawełoszek Ł, Sadowski ŁJ, Ziolkowski PA (2017) Dual role of the histone variant H2A.Z in transcriptional regulation of stress-response genes. Plant Cell 29:791–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thung M, Rao IM (1999) Integrated management of abiotic stresses. In: Singh SP (ed) Common bean improvement in the twenty-first century. Kluwer, Dordrecht, pp 331–370

    Chapter  Google Scholar 

  • Trapp JJ, Urrea CA, Cregan PB, Miklas PN (2015) Quantitative trait loci for yield under multiple stress and drought conditions in a dry bean population. Crop Sci 55:1596

    Article  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A 97:11632–11637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Wu H, Zhang M, Ni Z, Sun Q (2013) Cloning, characterization and transgenic function analysis of wheat (Triticum aestivum L.) TaWRKY51 gene. JAB 21:1019–1027

    Google Scholar 

  • Wang X, Jia N, Zhao C, Fang Y, Lv T, Zhou W, Sun Y, Li B (2014) Knockout of AtDjB1, a J-domain protein from Arabidopsis thaliana, alters plant responses to osmotic stress and abscisic acid. Physiol Plant 152:286–300

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, Yang X, Qin F (2016) Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet 48:1233–1241

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang Q, Liu M, Bo C, Cai R (2017a) Overexpression of a maize MYB48 gene confers drought tolerance in transgenic Arabidopsis plants. J Plant Biol 60:612–621

    Article  CAS  Google Scholar 

  • Wang N, Zhang W, Qin M, Li S, Qiao M, Liu Z, Xiang F (2017b) Drought tolerance conferred in soybean (Glycine max. L) by GmMYB84, a novel R2R3-MYB transcription factor. Plant Cell Physiol 58:1764–1776

    Article  CAS  PubMed  Google Scholar 

  • Wen Z, Tan R, Zhang S, Collins P, Yuan J, Du W, Gu C, Ou S, Song Q, An Y (2018) Integrating GWAS and gene expression data for functional characterization of resistance to white mould in soya bean. Plant Biotechnol J 16:1825–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Wang L, Li L, Wang S (2014) De novo assembly of the common bean transcriptome using short reads for the discovery of drought-responsive genes. PLoS ONE 9:e109262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu J, Wang L, Fu J, Chen J, Wei S, Zhang S, Zhang J, Tang Y, Chen M, Zhu J, Lei L, Geng Q, Liu C, Wu L, Li X, Wang Q, Wang Z, Xing S, Zhang H, Blair M, Wang S (2020) Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline. Nat Genet 52:118–125

    Article  CAS  PubMed  Google Scholar 

  • Xi J, Qiu Y, Du L, Poovaiah BW (2012) Plant-specific trihelix transcription factor AtGT2l interacts with calcium/calmodulin and responds to cold and salt stresses. Plant Sci 185–186:274–280

    Article  PubMed  CAS  Google Scholar 

  • Xing DH, Lai ZB, Zheng ZY, Vinod KM, Fan BF, Chen ZX (2008) Stress- and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Mol Plant 1:459–470

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Lee H, Ishitani M, Zhu JK (2002) Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J Biol Chem 277:8588–8596

    Article  CAS  PubMed  Google Scholar 

  • Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE 9:e92913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan X, Liao H, Beebe SE, Blair MW, Lynch JP (2004) QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil 265:17–29

    Article  CAS  Google Scholar 

  • Yang SD, Seo PJ, Yoon HK, Park CM (2011) The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell 23:2155–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T (2000) Plant responses to drought, acclimation, and stress tolerance. Photosyntheetica 38:171–186

    Article  CAS  Google Scholar 

  • Zhang J, Guo X, Li X, Xiang F, Zhou B, Yu D, Tang D, Liu X (2012) The genetic and physiological analysis of late-flowering phenotype of T-DNA insertion mutants of AtCAL1 and AtCAL2 in Arabidopsis. Mol Biol Rep 39:1527–1535

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Xing L, Wang X, Hou YJ, Gao J, Wang P, Duan CG, Zhu X, Zhu JK (2014) The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci Signal 7:ra53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao K, Zhang D, Lv K, Zhang X, Cheng Z, Li R, Zhou B, Jiang T (2019) Functional characterization of poplar WRKY75 in salt and osmotic tolerance. Plant Sci 289:110259

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Schumaker KS, Guo Y (2012) Sumoylation of transcription factor MYB30 by the small ubiquitin-like modifier E3 ligase SIZ1 mediates abscisic acid response in Arabidopsis thaliana. Proc Natl Acad Sci U S A 109:12822–12827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Key R & D Program of China (2018YFD1000700/2018YFD1000704), the Ministry of Agriculture of China [the earmarked fund for the China Agriculture Research System (CARS-08)], the Agricultural Science and Technology Innovation Program of CAAS.

Author information

Authors and Affiliations

Authors

Contributions

L W, YJ C performed QTL analysis and characterized candidate genes. L W, LF W, J W and SM W designed and conducted the field experiments and generated phenotype data. L W, YJ C and J W wrote and finalized the manuscript. SM W planned and organized this study, and co-wrote the manuscript. All authors contributed to and approved the final manuscript.

Corresponding author

Correspondence to Shumin Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Janila Pasupuleti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1105 kb)

Supplementary file2 (XLSX 2441 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Chang, Y., Wang, L. et al. Genetic dissection of drought resistance based on root traits at the bud stage in common bean. Theor Appl Genet 134, 1047–1061 (2021). https://doi.org/10.1007/s00122-020-03750-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03750-6

Navigation