Skip to main content
Log in

The genetic and physiological analysis of late-flowering phenotype of T-DNA insertion mutants of AtCAL1 and AtCAL2 in Arabidopsis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The homozygous T-DNA mutants of AtCAL1 (Rat1) and AtCAL2 (Rat2) were obtained. The double mutant of Rat2/Rat1RNAi was constructed which showed obvious late-flowering phenotype from others. The expression of various flowering-related genes was studied among mutants and wild-type plants by quantitative RT–PCR. The double mutant plants showed the shortest root length compared with T-DNA insertion mutants and wild type plants under red light, blue light, and white light. The double mutants showed hypersensitivity to NaCl and ABA. However, these mutants had no effect on stomatal closure by ABA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mei WQ, Lei J, Xu Y, Wei G, Zhu YX (2007) Characterization of three Arabidopsis AP2/EREBP family transcription factors involved in ABA sensitivity, freeze and salt tolerance. Chin Sci Bull 52:1746–1753

    Article  CAS  Google Scholar 

  2. Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 19:199–222

    Article  Google Scholar 

  3. Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473

    Article  CAS  Google Scholar 

  4. Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ 25:141–151

    Article  PubMed  CAS  Google Scholar 

  5. Shinozaki K, Yamaguchi SK (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  6. Lenka SK, Bikash L, Abhay K, Viswanathan C, Bansal KC (2009) Genome-wide targeted prediction of ABA responsive genes in rice based on over-represented cis-motif in co-expressed genes. Plant Mol Biol 69:261–271

    Article  PubMed  CAS  Google Scholar 

  7. Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACIDINSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatase 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771

    Article  PubMed  CAS  Google Scholar 

  8. Wu Y, Kuzma J, Marechal E, Graeff R, Lee HC, Foster R, Chua NH (1997) Abscisic acid signaling through cyclic ADP-ribose in plants. Science 278:2126–2130

    Article  PubMed  CAS  Google Scholar 

  9. Pandey S, Tiwary SB, Upadhyaya KC, Sopory SK (2000) Calcium signaling:linking environmental signals to cellular functions. Crit Rev Plant Sci 19:291–318

    Article  CAS  Google Scholar 

  10. Lu C, Fedoroff N (2000) A mutation in the Arabidopsis HYL gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin and cytokinin. Plant Cell 12:2351–2366

    Article  PubMed  CAS  Google Scholar 

  11. Hugouvieux V, Kwak JM, Schroeder JI (2001) An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106:477–487

    Article  PubMed  CAS  Google Scholar 

  12. Xiong L, Gong Z, Rock CD, Subramanian S, Guo Y, Xu W, Galbraith D, Zhu JK (2001) Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell 1:771–781

    Article  PubMed  CAS  Google Scholar 

  13. Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell Suppl 14:S15–S45

    Google Scholar 

  14. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi SK (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2(MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  PubMed  CAS  Google Scholar 

  15. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  16. Saneoka H, Ishiguro S (2001) Effect of salinity and abscisic acid on accumulation of glycinebetaine and betaine aldehyde dehydrogenase mRNA in Sorghum leaves(Sorghum bicolor). J Plant Physiol 158:853–859

    Article  CAS  Google Scholar 

  17. Yokoi S, Quintero FJ, Cubero Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX, Na+/H+ antiporters in the salt stress response. Plant J 30:529–539

    Article  PubMed  CAS  Google Scholar 

  18. Yu RMK, Zhou Y (2003) Two genes encoding protein phosphatase 2A catalytic subunits are differentially expressed in rice. Plant Mol Biol 51:295–311

    PubMed  CAS  Google Scholar 

  19. Fukuda A, Chiba K (2004) Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A and Na+/H+ antiporter from barley. J Exp Bot 55:585–594

    Article  PubMed  CAS  Google Scholar 

  20. Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11:445–458

    Article  PubMed  CAS  Google Scholar 

  21. Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES (2000) The molecular basis of vernalization: the control role of Flowering Locus C (FLC). Proc Natl Acad Sci USA 97:3753–3758

    Article  PubMed  CAS  Google Scholar 

  22. He Y, Amasino RM (2005) Role of chromatin modification in flowering time control. Trends Plant Sci 10:30–35

    Article  PubMed  CAS  Google Scholar 

  23. Mockler TC, Yu X, Shalitin D, Parikh D, Michael TP, Liou J, Huang J, Smith Z, Alonso JM, Ecker JR, Chory J, Lin C (2004) Regulation of flowering time in Arabidopsis by Khomology domain proteins. Proc Natl Acad Sci USA 34:12759–12764

    Article  Google Scholar 

  24. Michaels SD, Amasino RM (1999) Flowering Locus C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    Article  PubMed  CAS  Google Scholar 

  25. Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:S18–S31

    Article  PubMed  CAS  Google Scholar 

  26. Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:S111–S130

    PubMed  CAS  Google Scholar 

  27. Jack T (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16:S1–S17

    Article  PubMed  CAS  Google Scholar 

  28. Guo H, Yang H, Mockler TC, Lin C (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279:1360–1363

    Article  PubMed  CAS  Google Scholar 

  29. Saez A, Robert N, Maktabi MH, Schroeder JI, Serrano R, Rodriguez PL (2006) Enhancement of abscisic acid sensitivity and reduction of water consumption in Arabidopsis by combined inactivation of the protein phosphatases type 2C ABI1 and HAB1. Plant Physiol 141:1389–1399

    Article  PubMed  CAS  Google Scholar 

  30. Josef MK, Aure′lien BD, Marie BD, Mohammad HM, Julian IS (2006) The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiol 140:127–139

    Google Scholar 

  31. Wang QM, Tu XJ, Deng KQ, Zeng JX, Zhao XY, Tang DY, Liu XM (2009) A defect in zinc finger protein double B-box 1a (DBB1a) causes abnormal floral development in Arabidopsis. J Plant Biol 52:543–549

    Article  CAS  Google Scholar 

  32. Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    Article  PubMed  CAS  Google Scholar 

  33. Moroney JV, Bartlett SG, Samuelsson G (2001) Carbonic anhydrases in plants and algae. Plant Cell Environ 24:141–153

    Article  CAS  Google Scholar 

  34. Perales M, Parisi G, Fornasari MS, Colaneri A, Villarreal F, Onzalez SN, Gomez CD, Braun HP, Araya A, Echave J, Zabaleta E (2004) Gamma carbonic anhydrases in plant mitochondria. Plant Mol Biol 55:193–207

    Article  PubMed  Google Scholar 

  35. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  PubMed  CAS  Google Scholar 

  36. Ma S, Gong Q, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57:1097–1107

    Article  PubMed  CAS  Google Scholar 

  37. Amtmann A, Bohnert HJ, Bressan RA (2005) Abiotic stress and plant genome evolution. Search for new models. Plant Physiol 138:127–130

    Article  PubMed  CAS  Google Scholar 

  38. Ma S, Bohnert HJ (2007) Integration of Arabidopsis thaliana stress related transcript profiles, promoter structures, and cell-specific expression. Genome Biol 8:R49

    Article  PubMed  Google Scholar 

  39. Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  PubMed  CAS  Google Scholar 

  40. Ausin I, Alonso BC, Martinez Z (2005) Environmental regulation of flowering. Int J Dev Biol 49:689–705

    Article  PubMed  CAS  Google Scholar 

  41. Lin C (2000) Photoreceptors and regulation of flowering time. Plant Physiol 123:39–50

    Article  PubMed  CAS  Google Scholar 

  42. Parcy F (2005) Flowering: a time for integration. Int J Dev Biol 49:585–593

    Article  PubMed  Google Scholar 

  43. Onouchi H, Igeno MI, Perilleux C, Graves K, Coupland G (2000) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Plant Cell 12:885–900

    Article  PubMed  CAS  Google Scholar 

  44. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  PubMed  CAS  Google Scholar 

  45. Jeong HL, Soo HP, Jong SL, Ji HA (2007) A conserved role of Short Vegetative Phase (SVP) in controlling flowering time of Brassica plants. Biochim Biophys Acta 1769:455–461

    Google Scholar 

  46. Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J 21:4327–4337

    Article  PubMed  CAS  Google Scholar 

  47. Mandel MA, Yanofsky MF (1995) A gene triggering flower formation in Arabidopsis. Nature 377:522–524

    Article  PubMed  CAS  Google Scholar 

  48. Cho S, Jang S, Chae S, Chung KM, Moon YH, An G, Jang SK (1999) Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Mol Biol 40:419–429

    Article  PubMed  CAS  Google Scholar 

  49. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Dr. Fu-lu CHEN for kindly providing the mutants, and University of California professor Chen-tao LIN for his guidance to our experiments. This research was supported by the grants from National Natural Science Foundation of China (No. 30770200, No.30871325 and No.31071076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuanming Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Guo, X., Li, X. et al. The genetic and physiological analysis of late-flowering phenotype of T-DNA insertion mutants of AtCAL1 and AtCAL2 in Arabidopsis. Mol Biol Rep 39, 1527–1535 (2012). https://doi.org/10.1007/s11033-011-0891-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0891-2

Keywords

Navigation