Skip to main content
Log in

Genetic loci underlying quantitative resistance to necrotrophic pathogens Sclerotinia and Diaporthe (Phomopsis), and correlated resistance to both pathogens

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We provide results rooted in quantitative genetics, which combined with knowledge of candidate gene function, helps us to better understand the resistance to two major necrotrophic pathogens of sunflower.

Abstract

Necrotrophic pathogens can avoid or even benefit from plant defenses used against biotrophic pathogens, and thus represent a distinct challenge to plant populations in natural and agricultural systems. Sclerotinia and Phomopsis/Diaporthe are detrimental pathogens for many dicotyledonous plants, including many economically important plants. With no well-established methods to prevent infection in susceptible plants, host-plant resistance is currently the most effective strategy. Despite knowledge of a moderate, positive correlation in resistance to the two diseases in sunflower, detailed analysis of the genetics, in the same populations, has not been conducted. We present results of genome-wide analysis of resistance to both pathogens in a diversity panel of 218 domesticated sunflower genotypes of worldwide origin. We identified 14 Sclerotinia head rot and 7 Phomopsis stem canker unique QTLs, plus 1 co-located QTL for both traits, and observed extensive patterns of linkage disequilibrium between sites for both traits. Most QTLs contained one credible candidate gene, and gene families were common for the two disease resistance traits. These results suggest there has been strong, simultaneous selection for resistance to these two diseases and that a generalized mechanism for defense against these necrotrophic pathogens exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant Microbe Interact 21:507–517

    Article  CAS  PubMed  Google Scholar 

  • Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L, Mayjonade B, Legrand L (2017) The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546:148–152

    Article  CAS  PubMed  Google Scholar 

  • Balaji V, Smart CD (2012) Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum). Transgenic Res 21:23–37

    Article  CAS  PubMed  Google Scholar 

  • Balducchi AJ, McGee DC (1987) Environmental Factors Influencing Infection of Soybean Seeds by Phomopsis and Diaporthe Species During Seed Maturation. Plant Dis 71:209–212

    Article  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Bert PF, Jouan I, de Labrouhe DT, Serre F, Nicolas P, Vear F (2002) Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.) 1. QTL involved in resistance to Sclerotinia sclerotiorum and Diaporthe helianthi. Theor Appl Genet 105:985–993

    Article  CAS  PubMed  Google Scholar 

  • Bert PF, Dechamp-Guillaume G, Serre F, Jouan I, Tourvieille De Labrouhe D, Nicolas P, Vear F (2004) Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.) 3. Characterisation of QTL involved in resistance to Sclerotinia sclerotiorum and Phoma macdonaldi. Theor Appl Genet 109:865–874

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolton MD, Thomma BPHJ, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol

  • Boyle P, le Su E, Rochon A, Shearer HL, Murmu J, Chu JY, Fobert PR, Després C (2009) The BTB/POZ domain of the arabidopsis disease resistance protein npr1 interacts with the repression domain of TGA2 to negate its function. Plant Cell 21:3700–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browning BL, Zhou Y, Browning SR (2018) A one-penny imputed genome from next-generation reference panels. Am J Hum Genet 103:338–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochimica et Biophysica Acta—Gene Regulatory Mechanisms 1819:120–128

    Article  CAS  Google Scholar 

  • Debaeke P, Moinard J (2010) Effect of crop management on epidemics of phomopsis stem canker (Diaporthe helianthi) for susceptible and tolerant sunflower cultivars. Field Crops Res 115:50–60

    Article  Google Scholar 

  • Debaeke P, Estragnat A, Reau R (2003) Influence of crop management on sunflower stem canker (Diaporthe helianthi). Agronomie 23:581–592

    Article  Google Scholar 

  • DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7:1243–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dissanayake A, Phillips A, Hyde K, Yan J, Li X (2017) The current status of species in Diaporthe. Mycosphere 8:1–51

    Article  Google Scholar 

  • Elansky SN, Shkunkova TA, Chudinova EM, Pakina EN, Kokaeva LY, Alexandrova AV, Krutyakov YA (2020) First report of Phomopsis phaseoli on tomato. J Plant Pathol 102(1):263–264

    Article  Google Scholar 

  • Elverson TR, Kontz BJ, Markell SG, Harveson RM, Mathew FM (2020) Quantitative PCR assays developed for Diaporthe helianthi and Diaporthe gulyae for phomopsis stem canker diagnosis and germplasm screening in sunflower (Helianthus annuus). Plant Dis 104:793–800

    Article  CAS  PubMed  Google Scholar 

  • Faostat (2019) Oilcrops, oils, and meals. Food outlook, July 2018. FAO, Rome

  • Fusari CM, di Rienzo JA, Troglia C, Nishinakamasu V, Moreno MV, Maringolo C, Quiroz F, Álvarez D, Escande A, Hopp E et al (2012) Association mapping in sunflower for sclerotinia head rot resistance. BMC Plant Biol 12:1–13

    Article  CAS  Google Scholar 

  • Gao Q-M, Kane NC, Hulke BS, Reinert S, Pogoda CS, Tittes S, Prasifka JR (2018) Genetic architecture of capitate glandular trichome density in florets of domesticated sunflower (Helianthus annuus L.). Front Plant Sci 8:1–15

    Google Scholar 

  • Gentzbittel L, Mouzeyar S, Badaoui S, Mestries E, Vear F, Tourvieille De Labrouhe D, Nicolas P (1998) Cloning of molecular markers for disease resistance in sunflower, Helianthus annuus L. Theor Appl Genet 96(3-4):519–525

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Gulya T, Rashid KY, Marisevic SM (1997) Sunflower technology and production. Sunflower Dis

  • Gulya T, Harveson R, Mathew F, Block C, Thompson S, Kandel H, Berglund D, Sandbakken J, Kleingartner L, Markell S (2019) Comprehensive disease survey of U.S. sunflower: disease trends, research priorities and unanticipated impacts. Plant Dis 103:601–618

    Article  PubMed  Google Scholar 

  • Hallauer AR, Carena MJ, Miranda Filho JB (2010) Quantitative genetics in maize breeding

  • Hedtmann C, Guo W, Reifschneider E, Heiber I, Hiltscher H, van Buer J, Barsch A, Niehaus K, Rowan B, Lortzing T et al (2017) The plant immunity regulating F-box protein CPR1 supports plastid function in absence of pathogens. Front Plant Sci 8:1–22

    Article  Google Scholar 

  • Hims MJ (1979) Wild plants as a source of Sclerotinia sclerotiorum infecting oilseed rape. Plant Pathol 28:197–198

    Article  Google Scholar 

  • Hu Y, Dong Q, Yu D (2012) Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Sci 185-186:288–297

    Article  CAS  PubMed  Google Scholar 

  • Hulke BS, Markell SG, Kane NC, Mathew FM (2019) Phomopsis stem canker of sunflower in North America: correlation with climate and solutions through breeding and management. OCL 26:1–7

    Article  Google Scholar 

  • Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J (2017) WRKY transcription factors in plant responses to stresses. J Integr Plant Biol 59(2):86–101

    Article  CAS  PubMed  Google Scholar 

  • Kaler AS, Gillman JD, Beissinger T, Purcell LC (2020) Comparing different statistical models and multiple testing corrections for association mapping in soybean and maize. Front Plant Sci 10:1794

    Article  PubMed  PubMed Central  Google Scholar 

  • Knoth C, Ringler J, Dangl JL, Eulgem T (2007) Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Mol Plant Microbe Interact 20:120–128

    Article  CAS  PubMed  Google Scholar 

  • Kusaba M, Tanaka A, Tanaka R (2013) Stay-green plants: What do they tell us about the molecular mechanism of leaf senescence. Photosynth Res 117:221–234

    Article  CAS  PubMed  Google Scholar 

  • Lamport DTA, Kieliszewski MJ, Chen Y, Cannon MC (2011) Role of the extensin superfamily in primary cell wall architecture. Plant Physiol 156:11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langar K, Griveau Y, Serieys H, Kann F, Bervillé A, Seiler GJ (2004) Mapping components of resistance to Phomopsis (Diaporthe helianthi) in a population of sunflower recombinant inbred lines. In: Proceedings of the 16th international sunflower conference. International Sunflower Association. Fargo, pp 643–649

  • Lawrence DP, Travadon R, Baumgartner K (2015) Diversity of Diaporthe species associated with wood cankers of fruit and nut crops in Northern California. Mycologia 107:926–940

    Article  CAS  PubMed  Google Scholar 

  • Li J, Brader G, Kariola T, Tapio Palva E (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477–491

    Article  CAS  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu ZH, Sun J, Yang H, Mu LS, Zhang R (2008) Biological characteristics of Phomopsis asparagi the pathogen of asparagus stem blight. J Shenyang Agric Univ 39(3):301–304

    CAS  Google Scholar 

  • Liu X, Huang M, Fan B, Buckler ES, Zhang Z (2016) Iterative usage of fixed and random effect models for powerful and efficient genome- wide association studies. PLoS Genet 12:1–24

    Google Scholar 

  • Masirevic S, Gulya TJ (1992) Sclerotinia and Phomopsis—two devastating sunflower pathogens. Field Crops Res 30:271–300

    Article  Google Scholar 

  • Mestries E, Gentzbittel L, de Labrouhe DT, Nicolas P, Vear F (1998) Analyses of quantitative trait loci associated with resistance to Sclerotinia sclerotiorum in sunflowers (Helianthus annuus L.) using molecular markers. Mol Breed 4:215–226

    Article  CAS  Google Scholar 

  • Narasimhan V, Danecek P, Scally A, Xue Y, Tyler-Smith C, Durbin R (2016) BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics 3:1749–1751

    Article  CAS  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecrix Y, Penouilh-Suzette C, Muños S, Vear F, Godiard L (2018) Ten broad spectrum resistances to Downy Mildew physically mapped on the sunflower genome. Front Plant Sci 9:1–15

    Article  Google Scholar 

  • Pogoda CS, Keepers KG, Lendemer JC, Kane NC, Tripp EA (2018) Reductions in complexity of mitochondrial genomes in lichen-forming fungi shed light on genome architecture of obligate symbioses. Mol Ecol 27:1155–1169

    Article  CAS  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rönicke S, Hahn V, Vogler A, Friedt W (2005) Quantitative trait loci analysis of resistance to Sclerotinia sclerotiorum in sunflower. Phytopathology 95:834–839

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute (2013) SAS system for windows v. 9.2. SAS Institute Inc., Cary, NC, USA

    Google Scholar 

  • Shishido M, Sato K, Yoshida N, Tsukui R, Usami T (2010) PCR-based assays to detect and quantify Phomopsis sclerotioides in plants and soil. J Gen Plant Pathol 76(1):21–30

    Article  CAS  Google Scholar 

  • Talukder ZI, Hulke BS, Marek LF, Gulya TJ (2014) Sources of resistance to sunflower diseases in a global collection of domesticated USDA plant introductions. Crop Sci 54:694–705

    Article  Google Scholar 

  • Talukder ZI, Underwood W, Ma G, Seiler GJ, Misar CG, Cai X, Qi L (2020) Genetic dissection of Phomopsis stem canker resistance in cultivated sunflower using high density SNP linkage map. Int J Mol Sci 21:1–17

    Article  Google Scholar 

  • Tameling WIL, Joosten MHAJ (2007) The diverse roles of NB-LRR proteins in plants. Physiol Mol Plant Pathol 71:126–134

    Article  CAS  Google Scholar 

  • Thompson SM, Tan YP, Young AJ, Neate SM, Aitken EAB, Shivas RG (2011) Stem cankers on sunflower (Helianthus annuus) in Australia reveal a complex of pathogenic Diaporthe (Phomopsis) species. Persoonia Mol Phylogeny Evol Fungi 27:80–89

    Article  CAS  Google Scholar 

  • Thompson SM, Tan YP, Shivas RG, Neate SM, Morin L, Bissett A, Aitken EAB (2015) Green and brown bridges between weeds and crops reveal novel Diaporthe species in Australia. Persoonia Mol Phylogeny Evol Fungi 35:39–49

    Article  CAS  Google Scholar 

  • Udayanga D, Castlebury LA, Rossman AY, Chukeatirote E, Hyde KD (2015) The Diaporthe sojae species complex: phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops. Fungal Biol 119:383–407

    Article  PubMed  Google Scholar 

  • Úrbez-Torres JR, Peduto F, Smith RJ, Gubler WD (2013) Phomopsis dieback: a grapevine trunk disease caused by Phomopsis viticola in California. Plant Dis 97(12):1571–1579

    Article  PubMed  Google Scholar 

  • Van Eck L, Davidson RM, Wu S, Zhao BY, Botha A-M, Leach JE, Lapitan NLV (2014) The transcriptional network of WRKY53 in cereals links oxidative responses to biotic and abiotic stress inputs. Funct Integr Genomics 14(2):351–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Ma LY, Cao J, Li YL, Ding LN, Zhu KM, Yang YH, Tan XL (2019) Recent advances in mechanisms of plant defense to Sclerotinia sclerotiorum. Front Plant Sci 10:1–14

    Article  Google Scholar 

  • Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, de Luca V, Després C (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1:639–647

    Article  CAS  PubMed  Google Scholar 

  • Yue B, Radi SA, Vick BA, Cai X, Tang S, Knapp SJ, Gulya TJ, Miller JF, Hu J (2008) Identifying quantitative trait loci for resistance to sclerotinia head rot in two USDA sunflower germplasms. Phytopathology 98:926–931

    Article  CAS  PubMed  Google Scholar 

  • Zentgraf U, Laun T, Miao Y (2010) The complex regulation of WRKY53 during leaf senescence of Arabidopsis thaliana. Eur J Cell Biol 89:133–137

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Du L, Poovaiah BW (2014) Calcium signaling and biotic defense responses in plants. Plant Signal Behav 9:1–4

    Google Scholar 

  • Zubrzycki JE, Maringolo CA, Filippi CV, Quiróz FJ, Nishinakamasu V, Puebla AF, Julio ADR, Escande A, Lia VV, Heinz RA et al (2017) Main and epistatic QTL analyses for Sclerotinia Head Rot resistance in sunflower. PLoS ONE 12:1–24

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the assistance of Megan Ramsett and Dr. Nikolay Balbyshev in coordinating the phenotyping activities that resulted in this work. We also acknowledge the help of Dr. Febina Mathew in confirming the identity of the Phomopsis species that was present in our phenotyping trials for PSC, and Dr. William Underwood for thoughtful conversations about gene candidates. Dr. Susan M. Thompson of Agri-Science Queensland (Australia) contributed to phenotyping for PSC while on sabbatical. Bayer CropScience, CHS, Dow AgroSciences, and Winfield Solutions kindly provided land for the trials at Sabin, Grandin, Rothsay, Onida, and Crookston. North Dakota State University kindly provided land and field pathology assistance for the Carrington site. This work was supported by USDA-Agricultural Research Service CRIS Projects 5442-21220-024-00D and 3060-21000-043-00D, the National Sclerotinia Initiative of USDA-Agricultural Research Service, and the National Sunflower Association checkoff grant program. This research was also supported by BARD, the United States - Israel Binational Agricultural Research and Development Fund, Vaadia-BARD Postdoctoral Fellowship Award No. FI-577-2018.

Author information

Authors and Affiliations

Authors

Contributions

BSH and TJG initiated the project and designed the phenotyping study. NCK, CSP, BSH, and ECEC designed and implemented sequencing of the sunflower lines and genotype data generation. TJG, ZIT, and BSH carried out the field experiments and analyzed the data for GWAS input values. SR, ZIT, ZA, and CSP performed statistical analysis and wrote the majority of the manuscript. All of the authors assisted in revision of the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Brent S. Hulke.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Volker Hahn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Thomas J. Gulya retired.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 19160 kb)

Supplementary material 2 (XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogoda, C.S., Reinert, S., Talukder, Z.I. et al. Genetic loci underlying quantitative resistance to necrotrophic pathogens Sclerotinia and Diaporthe (Phomopsis), and correlated resistance to both pathogens. Theor Appl Genet 134, 249–259 (2021). https://doi.org/10.1007/s00122-020-03694-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03694-x

Navigation