Skip to main content
Log in

Phenotypic, genetic, and molecular function of msc-2, a genic male sterile mutant in pepper (Capsicum annuum L.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Bulked segregant analysis and fine mapping delimited the pepper genic male sterile (msc-2) locus into a 336 kb region on chromosome 5. A strong candidate gene, Capana05g000766, a homolog of AtMS1, was indentified in this region.

Abstract

Genic male sterility (msc-2) is used to produce hybrid seeds in Northern China. However, no co-segregated markers have been reported or candidate genes controlling this trait have been cloned. Here, bulked segregant analysis and genotyping of an F2 population and a 18Q5431AB line were employed to fine map msc-2, which was delimited to a 336 kb region. In this region, Capana05g000766 was a homolog of AtMS1, which encodes a plant homeodomain finger involved in tapetum development. A “T” deletion in the Capana05g000766 locus leads to a premature stop codon, which may cause a loss-of-function mutation. Real-time PCR analysis revealed that Capana05g000766 was an anther-specific gene and down-regulation of the gene resulted in male sterility. Therefore, Capana05g000766 was identified as the strongest candidate gene for the msc-2 locus. Allelism tests showed that msc-1 and msc-2 were nonallelic, and bimolecular fluorescence complementation analysis indicated that the two genes did not interact directly with each other at the protein level. As msc-1 and msc-2 are homologs of AtDYT1 and AtMS1 in Arabidopsis, they may play similar roles in tapetum development in genic male sterile peppers, and Msc-1 might be up stream of Msc-2 in the regulation of other genes involved in tapetum development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMS:

ABORTED MICROSPORES

bHLH:

Basic helix-loop-helix

BiFC:

Bimolecular fluorescence complementation

BSA:

Bulked segregant analysis

Chr.:

Chromosome

CAPs:

Cleaved amplified polymorphic sequence

CMS:

Cytoplasmic male sterility

DYT1:

DYSFUNCTIONAL TAPETUM1

GMS:

Genic male sterility

HRM:

High-resolution melting

LZ:

Leucine zipper

MS1:

MALE STERILE1

MS188:

MALE STERILITY188

PHD:

Plant homeodomain

PCD:

Programmed cell death

qRT:

Quantitative reverse transcription

SNP:

Single nucleotide polymorphism

SLAF-Seq:

Specific locus amplified fragment sequencing

SSR:

Simple sequence repeat

TDF1:

DEFECTIVE IN TAPETAL DEVELOPMENT AND FUNCTION1

VIGS:

Virus-induced gene silencing

References

  • Albertsen M, Fox T, Leonard A, Li B, Loveland B, Trimnell M (2016) Cloning and use of the ms9 gene from maize. US patent US20160024520A1

  • Ariizumi T, Toriyama K (2007) Pollen exine pattern formation is dependent on three major developmental processes in Arabidopsis Capsicum annuum. Annu Rev Plant Biol 62:437–460

    Article  CAS  Google Scholar 

  • Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K (2005) The HKM gene, which is identical to the MS1 gene of Arabidopsis thaliana, is essential for primexine formation and exine pattern formation. Sex Plant Reprod 18:1–7

    Article  CAS  Google Scholar 

  • Aulakh PS, Dhaliwal MS, Jindal SK, Schafeitner R, Singh K (2016) Mapping of male sterility gene ms10 in chilli pepper (Capsicum annuum L.). Plant Breed 135:531–535

    Article  CAS  Google Scholar 

  • Bartoszewski G, Waszczak C, Gawroński P, Stępień I, BolibokBrągoszewska H, Palloix A, Lefebvre V, Korzeniewska A, Niemirowicz-Szczytt K (2012) Mapping of the ms8 male sterility gene in sweet pepper (Capsicum annuum L.) on the chromosome P4 using PCR-based markers useful for breeding programmes. Euphytica 186:453–461

    Article  CAS  Google Scholar 

  • Cai CF, Zhu J, Lou Y, Guo ZL, Xiong SX, Wang K, Yang ZN (2015) The functional analysis of OsTDF1 reveals a conserved genetic pathway for tapetal development between rice and Arabidopsis. Sci Bull 60:1073–1082

    Article  CAS  Google Scholar 

  • Chen C, Yin S, Liu X et al (2016) The WD-repeat protein CsTTG1 regulates fruit wart formation through interaction with the homeodomain-leucine zipper I protein Mict. Plant Physiol 171:1156–1168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Q, Wang P, Liu JQ, Wu L, Zp Zhang, Tt Li, Wj Gao, Yang WC, Sun L, Shen HL (2018) Identification of candidate genes underlying genic male-sterile msc-1 locus via genome resequencing in Capsicum annuum L. Theor Appl Genet 131:1861–1872

    Article  CAS  PubMed  Google Scholar 

  • Cheng Q, Li T, Ai Y,X Lu QH, Wang YH, Sun L, Shen HL (2019) Complementary Transcriptomic and Proteomic Analysis Reveals a Complex Network Regulating Pollen Abortion in GMS (msc-1) Pepper (Capsicum annuum L.). International Journal of Molecular Sciences 20: 1789

    Article  CAS  PubMed Central  Google Scholar 

  • Dhaliwal MS, Jindal SK (2014) Induction and exploitation of nuclear and cytoplasmic male sterility in pepper (Capsicum spp.): a review. J Hortic Sci Biotenhnol 89:471–479

    Article  Google Scholar 

  • Dickinson HG, Heslop-Harrison J (1968) Common mode of deposition for the sporopollenin of sexine and nexine. Nature 220:926–927

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Zhang Q (2018) Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice. Plant Reprod 31:3–14

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Fu HF, Gong ZH, Chai WG (2016) Involvement of a universal amino acid synthesis impediment in cytoplasmic male sterility in pepper. Sci Rep 6:23357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson AC, Pearce S, Band LR, Yang C, Ferjentsikova I, King J, Yuan Z, Zhang D, Wilson ZA (2017) Biphasic regulation of the transcription factor ABORTED MICROSPORES (AMS) is essential for tapetum and pollen development in Arabidopsis. New Phytol 213:778–790

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Yu J, Cheng X, Zong X, Xu J, Chen M, Li Z, Zhang D, Liang W (2014) The rice basic helix-loop-helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. Plant Cell 26:1512–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez Fernández, Wilson ZA (2014) A barley PHD finger transcription factor that confers male sterility by affecting tapetal development. Plant Biotechnol J 12:765–777

    Article  CAS  Google Scholar 

  • Gu JN, Zhu J, Yu Y, Teng XD, Lou Y, Xu XF, Liu JL, Yang ZN (2014) DYT1 directly regulates the expression of TDF1 for tapetum development and pollen wall formation in Arabidopsis. Plant J 80:1005–1013

    CAS  PubMed  Google Scholar 

  • Guo JJ, Wang P, Cheng Q et al (2017) Proteomic analysis reveals strong mitochondrial involvement in cytoplasmic male sterility of pepper (Capsicum annuum L.). J Proteom 168:15–27

    Article  CAS  Google Scholar 

  • Han Y, Zhao F, Gao S et al (2017) Fine mapping of a male sterility gene ms-3 in a novel cucumber (Cucumis sativus L.) mutant. Theor Appl Genet 131:449–460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heslop-Harrison J (1962) Origin of exine. Nature 195:1069–1071

    Article  CAS  Google Scholar 

  • Hill JT, Demarest BL, Bisgrove BW, Gorsi B, Su YC, Yost HJ (2013) MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res 23:687–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, Shinozaki K (2007) Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell 19:3549–3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong HJ, Kang JH, Zhao M, Kwon JK, Choi HS, Bae JH, Lee HA, Joung YH, Choi D, Kang BC (2014) Tomato Male-sterile 1035 is essential for pollen development and meiosis in anthers. J Exp Bot 65:6693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong K, Choi D, Lee J (2018) Fine mapping of the genic male-sterile ms1 gene in Capsicum annuum L. Theor Appl Genet 131:183–191

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, Kim MJ, Kim YK, Nahm BH, An G (2005) Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell 17:2705–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko SS, Li MJ, Sun-Ben KuM et al (2014) The bHLH142 transcription factor coordinates with TDR1 to modulate the expression of EAT1 and regulate pollen development in rice. Plant Cell 26:2486–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Han JH, An CG, Lee WP, Yoon JB (2010a) A CAPS marker linked to a genic male-sterile gene in the colored sweet pepper, ‘Paprika’ (Capsicum annuum L.). Breed Sci 60:93–98

    Article  CAS  Google Scholar 

  • Lee J, Lee WP, Han JH, Yoon JB (2010b) Development of molecular marker linked to a genic male-sterile gene, msk in chili pepper. Korean J Hortic Sci Technol 28:270–274

    CAS  Google Scholar 

  • Lee J, Yoon JB, Han JH, Lee WP, Kim SH, Park HG (2010c) Three AFLP markers tightly linked to the genic male sterility ms3 gene in chili pepper (Capsicum annuum L.) and conversion to a CAPS marker. Euphytica 173:55–61

    Article  CAS  Google Scholar 

  • Lee J, Do JW, Han JH, An CG, Kweon OY, Kim YK, Yoon JB (2011) Allelism and molecular marker tests for genic male sterility in paprika cultivars. Korean J Hortic Sci Technol 29:130–134

    Google Scholar 

  • Lee HR, An HJ, Yang DC, Choi SH, Kim HJ (2012) Development of a high resolution melting (HRM) marker linked to genic male sterility in Capsicum annuum L. Plant Breed 131:444–448

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Zhang DS, Liu HS et al (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, Zong J, Wilson ZA, Zhang D (2011) PERSISTENT TAPETAL CELL1 encodes a PHD-fnger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol 156:615–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Yu H, Deng Y et al (2017) PepperHub, an informatics hub for the chili pepper research community. Mol Plant 10:1129–1132

    Article  CAS  PubMed  Google Scholar 

  • Lou Y, Xu XF, Zhu J, Gu JN, Blackmore S, Yang ZN (2014) The tapetal AHL family protein TEK determines nexine formation in the pollen wall. Nat Commun 5:3855

    Article  CAS  PubMed  Google Scholar 

  • Lou Y, Zhou HS, Han Y, Zeng QY, Zhu J, Yang ZN (2018) Positive regulation of AMS by TDF1 and the formation of a TDF1-AMS complex are required for anther development in Arabidopsis thaliana. New Phytol 217:378–391

    Article  CAS  PubMed  Google Scholar 

  • Luo XD, Dai LF, Wang SB, Wolukau J, Jáhn M, Chen JF (2006) Male gamete development and early tapetal degeneration in cytoplasmic male-sterile pepper investigated by meiotic, anatomical and ultrastructural analyse. Plant Breed 125:395–399

    Article  Google Scholar 

  • Ma C, Zhu C, Zheng M, Liu M, Zhang D, Liu B, Li Q, Si J, Ren X, Song H (2019) CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system. Hortic Res 6:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mariani C, De Beuckeleer M, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by achimeric ribonuclease gene. Nature 347:737–741

    Article  CAS  Google Scholar 

  • Mascarenhas JP (1975) The biochemistry of angiosperm pollen development. Bot Rev 41:259–314

    Article  CAS  Google Scholar 

  • McKenna A, Hanna M, Banks E et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon J, Skibbe D, Timofejeva L, Wang CJ, Kelliher T, Kremling K, Walbot V, Cande WZ (2013) Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. Plant J 76:592–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nan GL, Zhai J, Arikit S, Morrow D, Fernandes J, Mai L, Nguyen N, Meyers BC, Walbot V (2017) MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development 144:163–172

    CAS  PubMed  Google Scholar 

  • Naresh P, Lin SW, Lin CY, Wang YW, Schafleitner R, Kilian A, Kumar S (2018) Molecular markers associated to two non-allelic genic male sterility genes in peppers (Capsicum annuum L.). Front Plant Sci 9:1343

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu N, Liang W, Yang X, Jin W, Wilson ZA, Hu J, Zhang D (2013) EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun 4:1445

    Article  PubMed  CAS  Google Scholar 

  • Piffanelli P, Ross JHE, Murphy DJ (1998) Biogenesis and function of the lipidic structures of pollen grains. Plant Reprod 11:65–80

    Article  CAS  Google Scholar 

  • Qin C, Yu C, Shen Y et al (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci USA 111:5135–5140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu YC, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322

    Article  CAS  Google Scholar 

  • Schütze K, Harter K, Chaban C (2009) Bimolecular fluorescence complementation (BiFC) to study protein–protein interactions in living plant cells. Methods Mol Biol 479:189–202

    Article  PubMed  CAS  Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16(Suppl):S46–S60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shifriss C (1997) Male sterility in pepper (Capsicum annuum L.). Euphytica 93:83–88

    Article  Google Scholar 

  • Shifriss C, Frankel R (1969) A new male sterility gene in Capsicum annuum L. J Am Soc Hortic Sci 94(4):385–387

    Google Scholar 

  • Sorensen AM, Kröber S, Unte US, Huijser P, Dekker K, Saedler H (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J 33:413–423

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H (2013) SLAF-seq: an effcient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 8:e58700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy BN, Hedau NK, Chaudhari GV, Kant L, Pattanayak A (2017) CMS system and its stimulation in hybrid seed production of Capsicum annuum L. Sci Hortic 222:175–179

    Article  Google Scholar 

  • Vizcay-Barrena G, Wilson ZA (2006) Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot 57:2709–2717

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Bosland PW (2006) The genes of Capsicum. HortScience 41:1169–1187

    Article  CAS  Google Scholar 

  • Wang LH, Zhang BX, Lefebvre V, Huang SW, Daubeze AM, Palloix A (2004) QTL analysis of fertility restoration in cytoplasmic male-sterile pepper. Theor Appl Genet 109:1058–1063

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Sui X, Guo J, Wang Z, Cheng J, Ma S, Li X, Zhang Z (2014) Antisense suppression of cucumber (Cucumis sativus L.) sucrose synthase 3 (CsSUS3) reduces hypoxic stress tolerance. Plant, Cell Environ 37:795–810

    Article  CAS  Google Scholar 

  • Wang K, Guo ZL, Zhou WT et al (2018) The regulation of sporopollenin biosynthesis genes for rapid pollen wall formation. Plant Physiol 178:283–294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson ZA, Morroll SM, Dawson J, Swarup R, Tighe PJ (2001) The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant Journal 28:27–39

    Article  CAS  Google Scholar 

  • Xiong SX, Lu JY, Lou Y, Teng XD, Gu JN, Zhang C, Shi QS, Yang ZN, Zhu J (2016) The transcription factors MS188 and AMS form a complex to activate the expression of CYP703A2 for sporopollenin biosynthesis in Arabidopsis thaliana. Plant J 88:936–946

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, Ding Z, Liang W, Zhang D, Wilson ZA (2010) The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell 22:91–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Ding Z, Vizcay-Barrena G, Shi J, Liang W, Yuan Z, Werck-Reichhart D, Schreiber L, Wilson ZA, Zhang D (2014) ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis. Plant Cell 26:1544–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Vizcay-Barrena G, Conner K, Wilson ZA (2007) MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19:3530–3548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Liu L, Sun L et al (2019) OsMS1 functions as a transcriptional activator to regulate programmed tapetum development and pollen exine formation in rice. Plant Mol Biol 99:175–191

    Article  CAS  PubMed  Google Scholar 

  • Zhang BX, Huang SW, Yang GM, Guo JZ (2000) Two RAPD markers linked to a major fertility restorer gene in pepper. Euphytica 113:155–161

    Article  CAS  Google Scholar 

  • Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133:3085–3095

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZB, Zhu J, Gao JF et al (2007) Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J 52:528–538

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Wu S, An X et al (2018) Construction of a multi-control sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J 16:459–471

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Chen H, Li H, Gao JF, Jiang H, Wang C, Guan YF, Yang ZN (2008) Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J 55:266–277

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Lou Y, Xu X, Yang ZN (2011) A genetic pathway for tapetum development and function in Arabidopsis. J Integr Plant Biol 53:892–900

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (31872097), Modern Agricultural Industry Technology System of Beijing Fruit Vegetables Innovation Team (BAIC01-2019) and The Construction of Beijing Science and Technology Innovation and Service Capacity in Top Subjects (CEFF-PXM2019_014207_000032).

Author information

Authors and Affiliations

Authors

Contributions

QC performed most of the experiments, analyzed the data and drafted the manuscript. TL performed the semi-thin paraffin section analysis. YA and QL performed the qRT-PCR analysis. YW, LW, and LJ performed VIGS experiments. LS modified the manuscript. HS designed and directed the entire study. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Huolin Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Hong-Qing Ling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 874 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Q., Li, T., Ai, Y. et al. Phenotypic, genetic, and molecular function of msc-2, a genic male sterile mutant in pepper (Capsicum annuum L.). Theor Appl Genet 133, 843–855 (2020). https://doi.org/10.1007/s00122-019-03510-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03510-1

Navigation