Skip to main content
Log in

Identification of loci controlling forage yield and nutritive value in diploid alfalfa using GBS-GWAS

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We attempted to identify genomic regions controlling forage yield and nutritive value in alfalfa. Several candidate genes and associated genetic markers were identified that could potentially be useful for alfalfa breeding to more efficiently develop improved cultivars.

Abstract

Alfalfa is one of the most widely cultivated forage legumes worldwide and improving alfalfa forage yield and nutritive value is a major global breeding goal. Genotyping-by-sequencing (GBS) provides cost-effective molecular marker genotyping for genome-wide association studies (GWAS). Using more than 15,000 genome-wide single nucleotide polymorphisms (SNP) identified from GBS, we conducted a GWAS to investigate forage yield and nutritive value-related traits. We have detected a number of associations for all the traits evaluated and a number of associations detected were located on the Medicago truncatula genome. The SNP in a coding region of a cell wall biosynthesis gene was associated with several cell wall-related traits, and we suggest that it may be the causative polymorphism. Two other SNPs residing in meristematic development and early growth genes were found to associate with the total biomass yield. None of the SNPs associated with regrowth after harvest or with spring regrowth were mapped to the M. truncatula genome, possibly reflecting the fact that M. truncatula is an annual species related to alfalfa that typically has limited ability to regrow. The alleles we identify with the major impact on forage yield and nutritive value can be rapidly incorporated into our breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bingham ET, McCoy TJ (1988) Cytology and cytogenetics of alfalfa. alfalfa and alfalfa Improvement 737–776. In: Hanson AA, Barnes DK, Hill RR (eds) Alfalfa and alfalfa improvement. American Society of Agronomy, Crop Science Society of America, Soil Science of America, Madison, WI

  • Blondon F, Marie D, Brown S, Kondorosi A (1994) Genome size and base composition in Medicago sativa and M. truncatula species. Genome 37:264–270

    Article  CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633

    Article  CAS  PubMed  Google Scholar 

  • Brummer EC and Casler MD (2014) Cool-season forages. In Smith S, Diers B, Specht J, Carver B (eds.). Genetic gain in major U.S. field crops. CSSA Spec. Publ. 33. ASA, CSSA, and SSSA. Madison, WI. doi:10.2135/cssaspecpub33.c3

  • Brummer EC, Kochert G, Bouton JH (1991) RFLP variation in diploid and tetraploid alfalfa. Theor Appl Genet 83:89–96

    Article  CAS  PubMed  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:1

    Article  Google Scholar 

  • Choi H-K, Mun J-H, Kim D-J, Zhu H, Baek J-M, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB et al (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572. doi:10.1098/rstb.2007.2170

    Article  CAS  PubMed  Google Scholar 

  • Diwan N, Bouton JH, Kochert G, Cregan PB (2000) Mapping of simple sequence repeat (SSR) DNA markers in diploid and tetraploid alfalfa. Theor Appl Genet 101:165–172

    Article  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill WG, Weir BS (1988) Variances and covariances of squared linkage disequilibria in finite populations. Theor Popul Biol 33:54–78

    Article  CAS  PubMed  Google Scholar 

  • Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108. doi:10.1038/nrg1521

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C et al (2012) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44:32–39

    Article  Google Scholar 

  • Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8:460

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Sakiroglu M, Krom N, Stanton-Geddes J, Wang M, Lee Y-C, Young ND, Udvardi M (2015) Genome-wide association of drought-related and biomass traits with HapMap SNPs in Medicago truncatula. Plant, Cell Environ 38:1997–2011

    Article  CAS  Google Scholar 

  • Lamb J, Sheaffer CC, Rhodes LH, Sulc RM, Undersander DJ, Brummer EC (2006) Five decades of alfalfa cultivar improvement: impact on forage yield, persistence, and nutritive value. Crop Sci 46:902

    Article  Google Scholar 

  • Li X, Han Y, Wei Y, Acharya A, Farmer AD, Ho J, Monteros MJ, Brummer EC (2014) Development of an alfalfa SNP array and its use to evaluate patterns of population structure and linkage disequilibrium. PLoS One 9:e84329. doi:10.1371/journal.pone.0084329

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Alarcón-Zúñiga B, Kang J, Nadeem Tahir MH, Jiang Q, Wei Y, Reyno R, Robins JG, Brummer EC (2015a) Mapping fall dormancy and winter injury in tetraploid alfalfa. Crop Sci 55:1995. doi:10.2135/cropsci2014.12.0834

    Article  CAS  Google Scholar 

  • Li X, Wei Y, Acharya A, Hansen JL, Crawford JL, Viands DR, Michaud R, Claessens A, Brummer EC (2015b) Genomic prediction of biomass yield in two selection cycles of a tetraploid alfalfa breeding population. Plant Genome. doi:10.3835/plantgenome2014.12.0090

    Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    Article  CAS  PubMed  Google Scholar 

  • Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marroni F, Pinosio S, Zaina G, Fogolari F, Felice N, Cattonaro F, Morgante M (2011) Nucleotide diversity and linkage disequilibrium in Populus nigra cinnamyl alcohol dehydrogenase (CAD4) gene. Tree genet genomes 7:1011–1023

    Article  Google Scholar 

  • Quiros CF, Bauchan GR (1988) The genus Medicago and the origin of the Medicago sativa complex. In: Hanson AA, Barnes DK, Hill RR (eds) Alfalfa and alfalfa improvement. American Society of Agronomy, Crop Science Society of America, Soil Science of America, Madison

    Google Scholar 

  • Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197:573–589

    Article  PubMed  PubMed Central  Google Scholar 

  • Ray IM, Han Y, Lei E, Meenach CD, Santantonio N, Sledge MK, Pierce CA, Sterling TM, Kersey RK, Bhandari HS, Monteros MJ (2015) Identification of QTL for alfalfa forage biomass productivity during drought. Crop Sci 55:2012–2033. doi:10.2135/cropsci2014.12.0840

    Article  CAS  Google Scholar 

  • Robins JG, Bauchan GR, Brummer EC (2007) Genetic mapping forage yield, plant height, and regrowth at multiple harvests in tetraploid alfalfa (Medicago sativa L.). Crop Sci 47:11

    Article  CAS  Google Scholar 

  • Rutkoski JE, Poland J, Jannink J-L, Sorrells ME (2013) Imputation of unordered markers and the impact on genomic selection accuracy. G3: genes| Genomes|. Genetics 3:427–439

    Google Scholar 

  • Sakiroglu M, Kaya MM (2012) Estimating genome size and confirming ploidy levels of wild tetraploid alfalfa accessions (Medicago sativa subsp. ×varia) using flow cytometry. Turk J Field Crop 17:151–156

    Google Scholar 

  • Sakiroglu M, Moore KJ, Brummer EC (2011) Variation in biomass yield, cell wall components, and agronomic traits in a broad range of diploid alfalfa accessions. Crop Sci 51:1956–1964

    Article  Google Scholar 

  • Sakiroglu M, Sherman-Broyles S, Story A, Moore KJ, Doyle JJ, Brummer EC (2012) Patterns of linkage disequilibrium and association mapping in diploid alfalfa (M. sativa L.). Theor Appl Genet 125:577–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Şakiroğlu M, Doyle JJ, Brummer EC (2010) Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.) accessions using SSR markers. Theor Appl Genet 121:403–415. doi:10.1007/s00122-010-1319-4

    Article  PubMed  Google Scholar 

  • Shrestha A, Hesterman OB, Squire JM, Fisk JW, Sheaffer CC (1998) Annual medics and berseem clover as emergency forages. Agron J 90:197. doi:10.2134/agronj1998.00021962009000020013x

    Article  Google Scholar 

  • Small E (2011) Alfalfa and relatives: Evolution and classification of Medicago. CAB Intl

  • Stanton-Geddes J, Paape T, Epstein B, Briskine R, Yoder J, Mudge J, Bharti AK, Farmer AD, Zhou P, Denny R, May GD, Erlandson S, Yakub M, Sugawara M, Sadowsky MJ, Young ND, Tiffin P (2013) Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in Medicago truncatula. PLoS One 8:e65688. doi:10.1371/journal.pone.0065688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stekhoven DJ, Bühlmann P (2012) MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28:112–118

    Article  CAS  PubMed  Google Scholar 

  • Sved JA (1971) Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor Popul Biol 2:125–141. doi:10.1016/0040-5809(71)90011

    Article  CAS  PubMed  Google Scholar 

  • USDA-NASS (2016) Crop production 2015 summary. (http://usda.mannlib.cornell.edu/usda/current/CropProdSu/CropProdSu-01-12-2016. Accessed 12 Mar 2016

  • Wang WYS, Barratt BJ, Clayton DG, Todd JA (2005) Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 6:109–118. doi:10.1038/nrg1522

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin NG, Montgomery GW, Goddard ME, Visscher PM (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569. doi:10.1038/ng.608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank to The Scientific and Technological Research Council of Turkey (TUBITAK) for supporting MŞ. This research was partially supported USDA-DOE Plant Feedstock Genomics for Bioenergy program awards #2006-35300-17224 and #2009-65504-05809 to E.C.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammet Sakiroglu.

Ethics declarations

Conflict of interest

Authors declared no conflict of interest in the authorship and publication of this document.

Additional information

Communicated by M. N. Nelson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2016_2782_MOESM1_ESM.png

Supplemental Fig. 1 Scree plot of the Principal Component Analyses of genotypic data from 362 individual genotypes. The X-axis indicates the principal component number and the Y axis indicates the proportion of the variance explained by each PC and the cumulative variance explained across PCs. (PNG 74 kb)

122_2016_2782_MOESM2_ESM.png

Supplemental Fig. 2 Quantile–quantile (Q–Q) plots for rest of the traits obtained by standard mixed linear model with both Q matrix and PCA correction. (a) arabinose (fall harvest), (b) arabinose (summer harvest), (c) glucose (fall harvest), (d) glucose (summer harvest), (e) NDF (fall harvest), (f) NDF (summer harvest), (g) regrowth (fall harvest), (h) regrowth (summer harvest), (i)stem thickness (summer harvest), (j) stem total mass ratio (fall harvest), (k) stem weight (fall harvest), (l) TNC (fall harvest), (m) TNC (summer harvest), (n) xylose (fall harvest), and (o) xylose (summer harvest) (PNG 353 kb)

122_2016_2782_MOESM3_ESM.jpg

Supplemental Fig. 3 Manhattan plots (mixed linear model) of mapped SNP markers associating with all the traits evaluated. (a) ADF (summer harvest), (b) ADL (fall harvest), (c) ADL (summer harvest), (d) arabinose (fall harvest), (e) arabinose (summer harvest), (f) glucose (fall harvest), (g) glucose (summer harvest), (h) NDF (summer harvest), (i) plant height (summer harvest), (j) regrowth (fall harvest), (k) regrowth (summer harvest), (l) spring regrowth (summer harvest), (m) stem thickness (summer harvest), (n) stem total mass ratio (fall harvest), (o) stem weight (fall harvest), (p) TNC (fall harvest), (q) TNC (summer harvest), (r) xylose (fall harvest), and (s) xylose (summer harvest) (JPEG 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakiroglu, M., Brummer, E.C. Identification of loci controlling forage yield and nutritive value in diploid alfalfa using GBS-GWAS. Theor Appl Genet 130, 261–268 (2017). https://doi.org/10.1007/s00122-016-2782-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2782-3

Keywords

Navigation