Skip to main content
Log in

Molecular mapping of an adult plant stem rust resistance gene Sr56 in winter wheat cultivar Arina

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

This article covers detailed characterization and naming of QSr.sun - 5BL as Sr56 . Molecular markers linked with adult plant stem rust resistance gene Sr56 were identified and validated for marker-assisted selection.

Abstract

The identification of new sources of adult plant resistance (APR) and effective combinations of major and minor genes is well appreciated in breeding for durable rust resistance in wheat. A QTL, QSr.sun-5BL, contributed by winter wheat cultivar Arina providing 12–15 % reduction in stem rust severity, was reported in an Arina/Forno recombinant inbred line (RIL) population. Following the demonstration of monogenic segregation for APR in the Arina/Yitpi RIL population, the resistance locus was formally named Sr56. Saturation mapping of the Sr56 region using STS (from EST and DArT clones), SNP (9 K) and SSR markers from wheat chromosome survey sequences that were ordered based on synteny with Brachypodium distachyon genes in chromosome 1 resulted in the flanking of Sr56 by sun209 (SSR) and sun320 (STS) at 2.6 and 1.2 cM on the proximal and distal ends, respectively. Investigation of conservation of gene order between the Sr56 region in wheat and B. distachyon showed that the syntenic region defined by SSR marker interval sun209-sun215 corresponded to approximately 192 kb in B. distachyon, which contains five predicted genes. Conservation of gene order for the Sr56 region between wheat and Brachypodium, except for two inversions, provides a starting point for future map-based cloning of Sr56. The Arina/Forno RILs carrying both Sr56 and Sr57 exhibited low disease severity compared to those RILs carrying these genes singly. Markers linked with Sr56 would be useful for marker-assisted pyramiding of this gene with other major and APR genes for which closely linked markers are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bansal UK, Bossolini E, Miah H, Keller B, Park RF, Bariana HS (2008) Genetic mapping of seedling and adult plant stem rust resistance in two European winter wheat cultivars. Euphytica 164:821–828

    Article  Google Scholar 

  • Bariana HS (2003) Breeding for disease resistance. In Encyclopedia of applied plant sciences. In: Thomas B, Murphy DJ, Murray BG (eds) Academic Press, Harcourt, p 244–253

  • Bariana HS, McIntosh RA (1995) Genetics of adult plant stripe rust resistance in four Australian wheats and the French cultivar ‘Hybride de Bersee’. Plant Breed 114:485–491

    Article  Google Scholar 

  • Bariana HS, Brown GN, Bansal UK, Miah H, Standen GE, Lu M (2007a) Breeding triple rust resistant wheat cultivars for Australia using conventional and marker-assisted selection technologies. Aus J Agric Res 58:576–587

    Article  Google Scholar 

  • Bariana HS, Miah H, Brown GN, Willey N, Lehmensiek A (2007) Molecular mapping of durable rust resistance in wheat and its implication in breeding. In: Wheat production in stressed environments. Developments in plant breeding, vol 12. Springer, Heidelberg, p 723–728

  • Bhavani S, Singh RP, Argillier O, Huerta-Espino J, Singh S, Njau P, Brun S, Lacam S, Desmouceaux N (2011) Mapping durable adult plant stem rust resistance to the race Ug99 group in six CIMMYT wheats. In McIntosh RA (ed) Proceedings Borlaug global rust initiative, vol 13–16. Technical Workshop, Saint Paul, p 43–53

  • Brenchley R, Spannag M, Pfeifer M, Barker G, D’Amore R, Allen A, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M-C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie W, Hall A, Mayer K, Edwards K, Bevan W, Hall N (2013) Analysis of the breadwheat genome using whole-genome shotgun sequencing. Nature. doi:10.1038/nature11650

    Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kianic S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunov A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, Lopez da Silvak M, Bockelman M, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morella MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. PNAS 110:8057–8062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32

    Article  CAS  PubMed  Google Scholar 

  • Haile JK, Nachit MM, Hammer K, Bedebo A, Roder MS (2012) QTL mapping of resistance to race Ug99 of Puccinia graminis f. sp. tritici in durum wheat (Triticum durum Desf.). Mol Breeding 30:1479–1493

    Article  Google Scholar 

  • Hare RA (1997) Characterization and inheritance of adult plant stem rust resistance in durum wheat. Crop Sci 37:1094–1099

    Article  Google Scholar 

  • Kaur J, Bansal UK, Khanna R, Saini RG, Bariana HS (2009) Molecular mapping of stem rust resistance in HD2009/WL711 recombinant inbred line population. Int J Plant Breed 3:28–33

    Google Scholar 

  • Keller B, Feuillet C, Yahiaoui N (2005) Map-based isolation of disease resistance genes from bread wheat: cloning in a supersize genome. Genet Res 85:93–100

    Article  CAS  PubMed  Google Scholar 

  • Koebner RMD, Summers RW (2003) 21st century wheat breeding: plot selection or plate detection. Trends Biotechnol 21:59–63

    Article  CAS  PubMed  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  CAS  PubMed  Google Scholar 

  • McFadden ES (1930) A successful transfer of emmer characters to vulgare wheat. Agron J 22:1020–1034

    Article  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers J, Morris C, Appels R, Xia X (2012) Catalogue of gene symbols for wheat: 2012 supplement. http://www.shigen.nig.ac.jp/wheat/komugi/genes/

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregation populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, Lagudah E, Somers D, Kilian A, Alaux M, Vautrin S, Berge`s H, Eversole K, Appels R, Safar J, Simkova H, Dolezel J, Bernard M, Feuillet C (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104

    Article  CAS  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed Central  PubMed  Google Scholar 

  • Singh RP, Hodson DP, Huerto-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Knox RE, DePauw RM, Singh AK, Cuthbert RD, Campbell HL, Singh D, Bhavani S, Fetch T, Clarke F (2013a) Identification and mapping in spring wheat of genetic factors controlling stem rust resistance and the study of their epistatic interactions across multiple environments. Theor Appl Genet 126:1951–1964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh S, Singh RP, Bhavani S, Huerto-Espino J, Eugenio LE (2013b) QTL mapping of slow-rusting, adult plant resistance to race Ug99 of stem rust fungus in PBW343/Muu RIL population. Theor Appl Genet 126:1367–1375

    Article  PubMed  Google Scholar 

  • Somers JD, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/QTLCart.htm

  • Watson IA, Butler FC (1984) Wheat rust control in Australia. National conferences and other initiatives and developments. The University of Sydney, Sydney

    Google Scholar 

  • Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J, Xu H, Zhao D, Tian D, Zhang C, Ma Z (2008) A high density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189

    Article  CAS  PubMed  Google Scholar 

  • Yu LX, Lorenz A, Rutkosko J, Singh RP, Bhavani S, Huerto-Espino J, Sorrells ME (2011) Association mapping and gene-gene interaction for stem rust resistance in CIMMYT spring wheat germplasm. Theor Appl Genet 123:1257–1268

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Urmil Bansal acknowledges the Australia Government for the Endeavour Executive award. We thank GRDC Australia and the Durable Rust Resistance in Wheat project (Bill and Melinda Gates Foundation) for funding and Dr Hanif Miah and Ms Kate Vincent for excellent technical support.

Conflict of interest

All authors read the manuscript and do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urmil Bansal.

Additional information

Communicated by H.-Q. Ling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, U., Bariana, H., Wong, D. et al. Molecular mapping of an adult plant stem rust resistance gene Sr56 in winter wheat cultivar Arina. Theor Appl Genet 127, 1441–1448 (2014). https://doi.org/10.1007/s00122-014-2311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2311-1

Keywords

Navigation