Skip to main content
Log in

A history of spine biomechanics

Focus on 20th century progress

Historisches zur Biomechanik der Wirbelsäule

Fortschritte des 20. Jahrhunderts im Fokus

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Abstract

The application of mechanical principles to problems of the spine dates to antiquity. Significant developments related to spinal anatomy and biomechanical behaviour made by Renaissance and post-Renaissance scholars through the end of the 19th century laid a strong foundation for the developments since that time. The objective of this article is to provide a historical overview of spine biomechanics with a focus on the developments in the 20th century. The topics of spine loading, spinal posture and stability, spinal kinematics, spinal injury, and surgical strategies were reviewed.

Zusammenfassung

Die Anwendung mechanischer Prinzipien im Rahmen der Behandlung von Problemen an der Wirbelsäule geht bis in die Antike zurück. Wesentliche Entwicklungen bezogen auf die Wirbelsäulenanatomie und das biomechanische Verhalten durch Gelehrte der Renaissance und Postrenaissance gegen Ende des 19. Jahrhunderts bildeten eine solide Grundlage für die Fortschritte seit dieser Zeit. Ziel dieses Beitrags ist es, einen historischen Überblick über die Biomechanik der Wirbelsäule zu geben, fokussiert wurde dabei auf die Entwicklungen im 20. Jahrhundert. Die Themen Wirbelsäulenbelastung, Wirbelsäulenhaltung und -stabilität, Wirbelsäulenkinematik, Rückenmarksverletzung und chirurgische Strategien wurden überprüft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abumi K, Panjabi MM, Kramer KM, Duranceau J, Oxland T et al (1990) Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine (Phila Pa 1976) 15(11):1142–1147

    Article  Google Scholar 

  2. Adams MA, Hutton WC (1980) The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces. J Bone Joint Surg Br 62(3):358–362

    Google Scholar 

  3. Adams MA, Hutton WC (1985) Gradual disc prolapse. Spine 10(6):524

    Article  CAS  PubMed  Google Scholar 

  4. Adams MA, Hutton WC (1982) Prolapsed intervertebral disc. A hyperflexion injury. Spine 7(3):184

    Article  CAS  PubMed  Google Scholar 

  5. Alem NM, Nusholtz GS, Melvin JW (1982) Superior-Inferior Head Impact Tolerance Levels. Final Report. University of Michigan Transportation Research Institute, UMTRI-82-41, Ann Arbor

    Google Scholar 

  6. An HS, Lim TH, You JW, Hong JH, Eck J, McGrady L (1995) Biomechanical evaluation of anterior thoracolumbar spinal instrumentation. Spine (Phila Pa 1976) 20(18):1979–1983

    Article  Google Scholar 

  7. Andersson GBJ, Örtengren R (1974) Myoelectric back muscle activity during sitting. Scand J Rehab Med Suppl 3:73

    CAS  Google Scholar 

  8. Andersson GBJ, Örtengren R, Nachemson A (1977) Intradiskal pressure, intra-abdominal pressure and myoelectric back muscle activity related to posture and loading. Clin Orthop 129:156

    Article  PubMed  Google Scholar 

  9. Anderst W, Baillargeon E, Donaldson W, Lee J, Kang J (2013) Motion path of the instant center of rotation in the cervical spine during in vivo dynamic flexion-extension: implications for artificial disc design and evaluation of motion quality after arthrodesis. Spine (Phila Pa 1976) 38(10):E594–E601

    Article  Google Scholar 

  10. Anderst WJ, Donaldson WF 3rd, Lee JY, Kang JD (2015) Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading. J Biomech 48(7):1286–1293

    Google Scholar 

  11. Appleton AB (1946) Posture. Practitioner 156:48–55

    CAS  PubMed  Google Scholar 

  12. Arjmand N, Gagnon D, Plamondon A, Shirazi-Adl A, Larivièr e C (2009) Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models. Clin Biomech (Bristol, Avon) 24(7):533–541

    Article  Google Scholar 

  13. Ashman RB, Galpin RD, Corin JD, Johnston CE 2nd (1989) Biomechanical analysis of pedicle screw instrumentation systems in a corpectomy model. Spine (Phila Pa 1976) 14(12):1398–1405

    Article  Google Scholar 

  14. Asmussen E, Klausen K (1962) Form and function of the erect human spine. Clin Orthop 25:55–63

    CAS  PubMed  Google Scholar 

  15. Atkinson PJ (1967) Variation in trabecular structure of vertebrae with age. Calcif Tissue Res 1:24

    Article  CAS  PubMed  Google Scholar 

  16. Bauze RJ, Ardran GM (1978) Experimental production of for- ward dislocation in the human cervical spine. J Bone Joint Surg 60B:239–245

    Google Scholar 

  17. Bell GH, Dunbar O, Beck JS, Gibb A (1967) Variation in strength of vertebrae with age and their relation to osteoporosis. Calcif Tissue Res 1:75

    Article  CAS  PubMed  Google Scholar 

  18. Belytschko T, Kulak RF, Schultz AB (1974) Finite element stress analysis of an intervertebral disc. J Biomech 7:277–285

    Article  CAS  PubMed  Google Scholar 

  19. Bennett GJ, Serhan HA, Sorini PM, Willis BH (1997) An experimental study of lumbar destabilization. Restabilization and bone density. Spine (Phila Pa 1976) 22(13):1448–1453

    Article  Google Scholar 

  20. Bergmann G, Duda G (2010) Das Gesetz der Transformation der Knochen by JW Wolff: Hirschwald, Berlin 1892 – Reprint 300 Seiten – Mit vier Nachworten und historischen Dokumenten

  21. Bergmark A (1989) Stability of the lumbar spine. A study in mechanical engineering. Acta Orthop Scand Suppl 230:1–54

    Article  CAS  PubMed  Google Scholar 

  22. Berkson MH, Nachemson A, Schultz AB (1979) Mechanical properties of human lumbar spine motion segments–Part 2: responses in compression and shear; influence of gross morphology. J Biomech Eng 101:53

    Article  Google Scholar 

  23. Bonne AJ (1969) On the shape of the human vertebral column. Acta Orthop Belg 35(3):567–583

    Google Scholar 

  24. Borelli GA (1989) De Motu Animalium. Maquet P, trans. Springer-Verlag, Berlin

    Google Scholar 

  25. Braune W, Fischer O (1895) Human gait: trial on loaded and unloaded humans [in German]. Saech Gesellsch Wissensch 21:153–322

    Google Scholar 

  26. Brinckmann P (1986) Injury of the annulus fibrosus and disc protrusions. Spine 11:149

    Article  CAS  PubMed  Google Scholar 

  27. Brinckmann P, Horst M (1985) The influence of vertebral body fracture, intradiscal injection, and partial discectomy on the radial bulge and height of human lumbar discs. Spine 10(2):138

    Article  CAS  PubMed  Google Scholar 

  28. Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Spine (Phila Pa 1976) 14(6):606–610

    Article  Google Scholar 

  29. Brodke DS, Dick JC, Kunz DN, McCabe R, Zdeblick TA (1997) Posterior lumbar interbody fusion. A biomechanical comparison, including a new threaded cage. Spine (Phila Pa 1976) 22(1):26–31

    Article  CAS  Google Scholar 

  30. Brown T, Hanson R, Yorra A (1957) Some mechanical tests on the lumbo-sacral spine with particular reference to the intervertebral discs. J Bone Joint Surg 39A:1135

  31. Callaghan JP, McGill SM (2001) Intervertebral disc herniation: studies on a porcine model exposed to highly repetitive flexion/extension motion with compressive force. Clin Biomech (Bristol, Avon) 16(1):28–37

    Article  CAS  Google Scholar 

  32. Chaffin DB (1969) A computerized biomechanical model-development of and use in studying gross body actions. J Biomech 2(4):429–441

    Article  Google Scholar 

  33. Cholewicki J, McGill SM (1996) Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain. Clin Biomech (Bristol, Avon) 11(1):1–15

    Article  Google Scholar 

  34. Cholewicki J, McGill SM, Norman RW (1995) Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach. J Biomech 28(3):321–331

    Article  Google Scholar 

  35. Christophy M, Faruk Senan NA, Lotz JC, O’Reilly OM (2012) A musculoskeletal model for the lumbar spine. Biomech Model Mechanobiol 11(1–2):19–34

    Article  PubMed  Google Scholar 

  36. Coe JD, Warden KE, Herzig MA, McAfee PC (1990) Influence of bone mineral density on the fixation of thoracolumbar implants. A comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine (Phila Pa 1976) 15(9):902–907

    Article  Google Scholar 

  37. Crisco JJ 3rd, Panjabi MM (1992a) Euler stability of the human ligamentous lumbar spine Part I: theory. Clin Biomech (Bristol, Avon) 7(1):19–26

  38. Cripton PA, Bruehlmann SB, Orr TE, Oxland TR, Nolte LP (2000) In vitro axial preload application during spine flexibility testing: towards reduced apparatus-related artefacts. J Biomech 33(12):1559–1568

    Article  Google Scholar 

  39. Crisco JJ, Panjabi MM, Yamamoto I, Oxland TR (1992b) Euler stability of the human ligamentous lumbar spine Part II: experiment. Clin Biomech (Bristol, Avon) 7(1):27–32

  40. Dick JC, Brodke DS, Zdeblick TA, Bartel BD, Kunz DN, Rapoff AJ (1997) Anterior instrumentation of the thoracolumbar spine. A biomechanical comparison. Spine (Phila Pa 1976) 22(7):744–750

    Article  Google Scholar 

  41. Duval-Beaupère G, Schmidt C, Cosson PA (1992) Barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20(4):451–462

    Article  Google Scholar 

  42. Dvorak J, Hayek J, Zehnder R (1987) CT-functional diagnostics of the rotatory instability of the upper cervical spine. Part 2. An evaluation on healthy adults and patients with suspected instability. Spine (Phila Pa 1976) 12(8):726–731

    Article  Google Scholar 

  43. Dvorák J, Panjabi MM, Chang DG, Theiler R, Grob D (1991) Functional radiographic diagnosis of the lumbar spine. Flexion-extension and lateral bending. Spine (Phila Pa 1976) 16(5):562–571

    Google Scholar 

  44. Dvorak J, Antinnes JA, Panjabi M, Loustalot D, Bonomo M (1992) Age and gender related normal motion of the cervical spine. Spine (Phila Pa 1976) 17(10 Suppl):S393–S398

    Google Scholar 

  45. Dvorák J, Vajda EG, Grob D, Panjabi MM (1995) Normal motion of the lumbar spine as related to age and gender. Eur Spine J 4(1):18–23

    Article  PubMed  Google Scholar 

  46. El-Rich M, Shirazi-Adl A, Arjmand N (2004) Muscle activity, internal loads, and stability of the human spine in standing postures: combined model and in vivo studies. Spine (Phila Pa 1976) 29(23):2633–2642

    Article  Google Scholar 

  47. Eppinger R, Sun E, Bandak F, Huffier M, Khaewpong N, Maltese M et al (1999) Development of Improved Injury Criteria for the Assessment of Advanced Automotive Restraint Systems—II. NHTSA report

  48. Er U, Naderi S (2013) Paulus aegineta: review of spine-related chapters in “Epitomoe medicoe libri septem”. Spine (Phila Pa 1976) 38(8):692–695

    Article  Google Scholar 

  49. Evans FG, Lissner HR (1959) Biomechanical studies on the lumbar spine and pelvis. J Bone Joint Surg Am 41:278–290

    PubMed  Google Scholar 

  50. Evans FG, Lissner HR, Patrick LM (1962) Acceleration-induced strains in the intact vertebral column. J Appl Physiol 17:405–409

    Google Scholar 

  51. Farfan HF, Cossette JW, Robertson GH, Wells RV, Kraus H (1970) The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration. J Bone Joint Surg Am 52(3):468–497

    Google Scholar 

  52. Fick R (1911) Handbuch der Anatomie und Mechanik der Gelenke unter Berücksichtigung der bewegenden Muskeln Spezielle Gelenk- und Muskelmechanik. Fischer, Jena

    Google Scholar 

  53. Galante JO (1967) Tensile properties of the human lumbar annulus fibrosus. Acta Orthop Scand Suppl 100:1

    Article  Google Scholar 

  54. Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S et al (2005) The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976) 30(18):2024–2029

    Article  Google Scholar 

  55. Glazer PA, Colliou O, Lotz JC, Bradford DS (1996) Biomechanical analysis of lumbosacral fixation. Spine (Phila Pa 1976) 21(10):1211–1222

    Article  Google Scholar 

  56. Goel VK, Goyal S, Clark C, Nishiyama K, Nye T (1985) Kinematics of the whole lumbar spine: effect of discectomy. Spine 10(6):543

    Article  CAS  PubMed  Google Scholar 

  57. Goel VK, Nishiyama K, Weinstein JN, Liu YK (1986) Mechanical properties of lumbar spinal motion segments as affected by partial disc removal. Spine 11(10):1008

    Article  CAS  PubMed  Google Scholar 

  58. Goel VK, Kim YE, Lim TH, Weinstein JN (1988a) An analytical investigation of the mechanics of spinal instrumentation. Spine (Phila Pa 1976) 13(9):1003–1011

  59. Goel VK, Clark CR, Gallaes K, Liu YK (1988b) Moment-rotation relationships of the ligamentous occipito-atlanto-axial complex. J Biomech 21(8):673–680

  60. Gordon SJ, Yang KH, Mayer PJ, Mace AH Jr, Kish VL, Radin EL (1991) Mechanism of disc rupture. A preliminary report. Spine (Phila Pa 1976) 16(4):450–456

    Article  Google Scholar 

  61. Gurdijan ES, Lissner HR, Patrick LM (1962) Protection of the head and neck in sports. JAMA 182:509–512

    Google Scholar 

  62. Gurr KR, McAfee PC, Shih CM (1988) Biomechanical analysis of posterior instrumentation systems after decompressive laminectomy. An unstable calf-spine model. J Bone Joint Surg Am 70(5):680–691

    Google Scholar 

  63. Hakim NS, King AI (1979) A three dimensional finite element dynamic response analysis of a vertebra with experimental verification. J Biomech 12:277–292

    Article  CAS  PubMed  Google Scholar 

  64. Han KS, Zander T, Taylor WR, Rohlmann A (2012) An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces. Med Eng Phys 34(6):709–716

    Article  Google Scholar 

  65. Hansson T, Roos B (1980) The influence of age, height and weight on the bone mineral content of lumbar vertebrae. Spine 5:545

    Article  CAS  PubMed  Google Scholar 

  66. Hardy WG, Lissner HR, Webster JE, Gurdjian ES (1958) Repeated loading tests of the lumbar spine; a preliminary report. Surg Forum 9:690–695

    CAS  PubMed  Google Scholar 

  67. Hattori S, Oda H, Kawai S (1981) Cervical intradiscal pressure in movements and traction of the cervical spine. Z Orthop 119:568

    Google Scholar 

  68. Haughton S (1866) On hanging, considered from a mechanical and physiological point of view. Philos Mag 31:23–24

    Google Scholar 

  69. Heuer F, Schmidt H, Klezl Z, Claes L, Wilke HJ (2007) Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J Biomech 40(2):271–280

    Article  Google Scholar 

  70. Hirsch C, Nachemson A (1954) A new observation on the mechanical behaviour of lumbar discs. Acta Orthop Scand 23:254

    Article  CAS  PubMed  Google Scholar 

  71. Hodges PW, Richardson CA (1996) Inefficient muscular stabilization of the lumbar spine associated with low back pain. A motor control evaluation of transversus abdominis. Spine (Phila Pa 1976) 21(22):2640–2650

    Article  Google Scholar 

  72. Hodgson VR, Thomas LM (1980) Mechanisms of cervical spine injury during impact to the protected head. In 24th Stapp Car Crash Conference Proceedings. Society of Automotive Engineers, Warrendale, PA, pp 15–42

  73. Ishii T, Mukai Y, Hosono N, Sakaura H, Fujii R, Nakajima Y, Tamura S, Sugamoto K, Yoshikawa H (2004) Kinematics of the subaxial cervical spine in rotation in vivo three-dimensional analysis. Spine (Phila Pa 1976) 29(24):2826–2831

    Article  Google Scholar 

  74. Ishii T, Mukai Y, Hosono N, Sakaura H, Fujii R, Nakajima Y, Tamura S, Iwasaki M, Yoshikawa H, Sugamoto K (2006) Kinematics of the cervical spine in lateral bending: in vivo three-dimensional analysis. Spine (Phila Pa 1976) 31(2):155–160

    Article  Google Scholar 

  75. Jackson RP, Peterson MD, McManus AC, Hales C (1998) Compensatory spinopelvic balance over the hip axis and better reliability in measuring lordosis to the pelvic radius on standing lateral radiographs of adult volunteers and patients. Spine (Phila Pa 1976) 23(16):1750–1767

    Article  Google Scholar 

  76. Keele KD, Pedretti C (1979) Leonardo da Vinci: Corpus of the Anatomical Studies in the Collection of Her Majesty the Queen at Windsor Castle. Harcourt Brace Jovanovich, London

    Google Scholar 

  77. Keller TS, Colloca CJ, Harrison DE, Harrison DD, Janik TJ (2005) Influence of spine morphology on intervertebral disc loads and stresses in asymptomatic adults: implications for the ideal spine. Spine J 5(3):297–309

    Article  PubMed  Google Scholar 

  78. Kiefer A, Shirazi-Adl A, Parnianpour M (1997) Stability of the human spine in neutral postures. Eur Spine J 6(1):45–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. King AI (1979) Tolerance of the neck to indirect impact. Tech- nical Report 9, NO 00014-75-C-1015, Wayne State University, Bioengineering Center, Detroit

  80. King AI, Viano DC, Mizeres N, States JD (1995) Humanitarian benefits of cadaver research on injury prevention. J Trauma 38(4):564–569

    Google Scholar 

  81. Kingma I, Staudenmann D, van Dieën JH (2007) Trunk muscle activation and associated lumbar spine joint shear forces under different levels of external forward force applied to the trunk. J Electromyogr Kinesiol 17(1):14–24. (Epub 2006 Mar 13)

    Article  PubMed  Google Scholar 

  82. Kothe R, Panjabi MM, Liu W (1997) Multidirectional instability of the thoracic spine due to iatrogenic pedicle injuries during transpedicular fixation. A biomechanical investigation. Spine (Phila Pa 1976) 22(16):1836–1842

    Article  Google Scholar 

  83. Lafage V, Schwab F, Patel A, Hawkinson N, Farcy JP (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine (Phila Pa 1976) 34(17):E599–E606

    Article  Google Scholar 

  84. Lee CK, Langrana NA (1984) Lumbosacral spinal fusion. A biomechanical study. Spine (Phila Pa 1976) 9(6):574–581

    Article  Google Scholar 

  85. Legaye J, Duval-Beaupère G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7(2):99–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Lin HS, Liu YK, Adams KH (1978) Mechanical response of the lumbar intervertebral joint under physiological (complex) loading. J Bone Joint Surg Am 60(1):41–55

    CAS  PubMed  Google Scholar 

  87. Liu YK, Ray G, Hirsch C (1975) The resistance of the lumbar spine to direct shear. Orthop Clin North Am 6:33

    CAS  PubMed  Google Scholar 

  88. Lorenz M, Patwardhan A, Vanderby R (1983) Load-bearing characteristics of lumbar facets in normal and surgically altered spinal segments. Spine 8:122

    Article  CAS  PubMed  Google Scholar 

  89. Lovett RW (1900) The mechanics of lateral curvature of the spine. Trans Am Orthop Assoc 113(1):251–273

    Google Scholar 

  90. Lucas D, Bresler B (1961) Stability of ligamentous spine. Biomechanics Lab. Report 40. University of California, San Francisco

    Google Scholar 

  91. Lumsden RM 2nd, Morris JM (1968) An in vivo study of axial rotation and immoblization at the lumbosacral joint. J Bone Joint Surg Am 50(8):1591–1602

    Google Scholar 

  92. Lund T, Oxland TR, Jost B, Cripton P, Grassmann S, Etter C, Nolte LP (1998) Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density. J Bone Joint Surg Br 80(2):351–359

    Article  Google Scholar 

  93. Lysell E (1969) Motion in the cervical spine. An experimental study on autopsy specimens. Acta Orthop Scand Suppl 123:1

    Article  Google Scholar 

  94. Marras WS, Granata KP (1997) Changes in trunk dynamics and spine loading during repeated trunk exertions. Spine (Phila Pa 1976) 22(21):2564–2570

    Article  Google Scholar 

  95. Marras WS, Lavender SA, Leurgans SE, Rajulu SL, Allread WG, Fathallah FA, Ferguson SA (1993) The role of dynamic three-dimensional trunk motion in occupationally-related low back disorders. The effects of workplace factors, trunk position, and trunk motion characteristics on risk of injury. Spine (Phila Pa 1976) 18(5):617–628

    Article  Google Scholar 

  96. McAfee PC, Farey ID, Sutterlin CE, Gurr KR, Warden KE, Cunningham BW (1991) The effect of spinal implant rigidity on vertebral bone density. A canine model. Spine (Phila Pa 1976) 16(6 Suppl):S190–S197

    Google Scholar 

  97. McElhaney JH, Paver JG, McCrackin HJ, Maxwell GM (1983) Cervical spine compression responses. In: 27th Stapp Car Crash Conference Proceedings. Society of Automotive Engineers, Warrendale, PA, pp 163–178

  98. McGill SM (2001) Low back stability: from formal description to issues for performance and rehabilitation. Exerc Sport Sci Rev 29(1):26–31

    Article  CAS  PubMed  Google Scholar 

  99. McGill SM, Norman RW (1986) Partitioning of the L4-L5 dynamic moment into disc, ligamentous, and muscular components during lifting. Spine (Phila Pa 1976) 11(7):666–678

    Article  Google Scholar 

  100. McGill SM, Karpowicz A (2009) Exercises for spine stabilization: motion/motor patterns, stability progressions, and clinical technique. Arch Phys Med Rehabil 90(1):118–126

    Article  Google Scholar 

  101. McLain RF, McKinley TO, Yerby SA, Smith TS, Sarigul-Klijn N (1997) The effect of bone quality on pedicle screw loading in axial instability. A synthetic model. Spine (Phila Pa 1976) 22(13):1454–1460

    Article  Google Scholar 

  102. McNally DS, Adams MA (1992) Internal intervertebral disc mechanics as revealed by stress profilometry. Spine (Phila Pa 1976) 17(1):66–73

    Article  CAS  Google Scholar 

  103. Mertz HJ, Patrick LM (1971) Strength and response of the human neck. In: 15th Stapp Car Crash Conference Pro-ceedings, New York, Society of Automotive Engineers, pp 207–255

  104. Messerer O (1880) Über Elasticität und Festigkeit der menschlichen Knochen. J. G. Cottaschen Buchhandlung, Stuttgart

    Google Scholar 

  105. Meyer H (1873) Die Statik und Mechanik des menschlichen Knochengerüstes. Wilhelm Engelman, Leipzig

  106. Missios S, Bekelis K, Roberts DW (2014) Neurosurgery in the Byzantine Empire: the contributions of Paul of Aegina (625–690 AD). J Neurosurg 120(1):244–249

    Article  Google Scholar 

  107. Moroney SP, Schultz AB, Miller JAA, Andersson GBJ (1988) Load-displacement properties of lower cervical spine motion segments. J. Biomech 21(9):767

    Article  Google Scholar 

  108. Mosekilde L, Mosekilde L (1986) Normal vertebral body size and compressive strength: relations to age and to vertebral and iliac trabecular bone compressive strength. Bone 7(3):207–212

    Article  Google Scholar 

  109. Nachemson A (1960) Lumbar interdiscal pressure. Acta Orthop Scand Suppl 43:1–104

    Article  CAS  PubMed  Google Scholar 

  110. Nachemson A (1966) The load on lumbar discs in different positions of the body. Clin. Orthop 45:107

    CAS  PubMed  Google Scholar 

  111. Nachemson A, Morris JM (1964) In vivo measurements of intradiscal pressure. Discometry, a method for the determination of pressure in the lower lumbar discs. J Bone Joint Surg Am 46:1077–1092

    Google Scholar 

  112. Naderi S, Andalkar N, Benzel EC (2007a) History of spine biomechanics: part I–the pre-Greco-Roman, Greco-Roman, and medieval roots of spine biomechanics. Neurosurgery 60(2):382–390

  113. Naderi S, Andalkar N, Benzel EC (2007b) History of spine biomechanics: part II—from the Renaissance to the 20th century. Neurosurgery 60(2):392–403

  114. Nagel DA, Kramers PC, Rahn BA, Cordey J, Perren SM (1991) A paradigm of delayed union and nonunion in the lumbosacral joint. A study of motion and bone grafting of the lumbosacral spine in sheep. Spine (Phila Pa 1976) 16(5):553–559

    Article  Google Scholar 

  115. Neumann P, Ekström LA, Keller TS, Perry L, Hansson TH (1994) Aging, vertebral density, and disc degeneration alter the tensile stress-strain characteristics of the human anterior longitudinal ligament. J Orthop Res 12(1):103–112

    Article  Google Scholar 

  116. Nibu K, Panjabi MM, Oxland T, Cholewicki J (1997) Multidirectional stabilizing potential of BAK interbody spinal fusion system for anterior surgery. J Spinal Disord 10(4):357–362

    Google Scholar 

  117. Nightingale RW, McElhaney JH, Richardson WJ, Best TM, Myers BS (1996) Experimental impact injury to the cervical spine: relating motion of the head and the mechanism of injury. J Bone Joint Surg Am 78(3):412–421

    Google Scholar 

  118. Nowinski GP, Visarius H, Nolte LP, Herkowitz HN (1993) A biomechanical comparison of cervical laminaplasty and cervical laminectomy with progressive facetectomy. Spine (Phila Pa 1976) 18(14):1995–2004

    Article  CAS  Google Scholar 

  119. Nusholtz GS, Huelke DF, Lux P, Alem NM, Montalvo F (1983) Cervical spine injury mechanisms. In: 27th Stapp Car Crash Conference Proceedings, Warrendale, PA, Society of Automotive Engineers, pp 179–198

  120. Oxland TR, Panjabi MM (1992) The onset and progression of spinal injury: a demonstration of neutral zone sensitivity. J Biomech 25(10):1165–1172

    Article  Google Scholar 

  121. Oxland TR, Lund T, Jost B, Cripton P, Lippuner K et al (1996) The relative importance of vertebral bone density and disc degeneration in spinal flexibility and interbody implant performance An in vitro study. Spine (Phila Pa 1976) 21(22):2558–2569

    Article  Google Scholar 

  122. Panjabi MM (1988b) Biomechanical evaluation of spinal fixation devices: I A conceptual framework. Spine (Phila Pa 1976) 13(10):1129–1134

  123. Panjabi MM (1992a) The stabilizing system of the spine Part I Function, dysfunction, adaptation, and enhancement. J Spinal Disord 5(4):383–389

  124. Panjabi MM (1992b) The stabilizing system of the spine Part II Neutral zone and instability hypothesis. J Spinal Disord 5(4):390–396

  125. Panjabi MM (2006) A hypothesis of chronic back pain: ligament subfailure injuries lead to muscle control dysfunction. Eur Spine J 15(5):668–676

    Article  Google Scholar 

  126. Panjabi M, White AA 3rd (1971) A mathematical approach for three-dimensional analysis of the mechanics of the spine. J Biomech 4(3):203–211

    Article  Google Scholar 

  127. Panjabi MM, White AA 3rd, Johnson RM (1975) Cervical spine mechanics as a function of transection of components. J Biomech 8(5):327–336

    Article  Google Scholar 

  128. Panjabi MM, Brand RA, White AA (1976) Mechanical properties of the human thoracic spine: as shown by three-dimensional load-displacement curves. J Bone Joint Surg 58A:642

    Google Scholar 

  129. Panjabi MM, Krag MH, White AA 3rd Southwick WO (1977) Effects of preload on load displacement curves of the lumbar spine. Orthop Clin North Am 8(1):181–192

    Google Scholar 

  130. Panjabi MM, Hausfeld JN, White AA 3rd (1981) A biomechanical study of the ligamentous stability of the thoracic spine in man. Acta Orthop Scand 52(3):315–326

    Article  Google Scholar 

  131. Panjabi MM, Goel VK, Takata K (1982) Physiological strains in lumbar spinal ligaments, an in vitro biomechanical study. Spine 7(3):192

    Article  CAS  PubMed  Google Scholar 

  132. Panjabi MM, Krag MH, Chung TQ (1984) Effects of disc injury on mechanical behaviour of the human spine. Spine 9(7):707

    Article  CAS  PubMed  Google Scholar 

  133. Panjabi MM, Summers DJ, Pelker RR, Videman T, Friedlaender GE, Southwick WO (1986) Three-dimensional load-displacement curves due to forces on the cervical spine. J Orthop Res 4(2):152–161

    Google Scholar 

  134. Panjabi MM, Dvorak J, Duranceau J et al (1988a) Three dimensional movements of the upper cervical spine. Spine 13(7):726

  135. Panjabi M, Abumi K, Duranceau J, Oxland T (1989) Spinal stability and intersegmental muscle forces. A biomechanical model. Spine (Phila Pa 1976) 14(2):194–200

    Article  CAS  Google Scholar 

  136. Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ (1994) Mechanical behaviour of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am 76(3):413–424

    Google Scholar 

  137. Panjabi MM, Crisco JJ, Vasavada A, Oda T, Cholewicki J et al (2001) Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves. Spine (Phila Pa 1976) 26(24):2692–2700

    Article  Google Scholar 

  138. Patwardhan AG, Havey RM, Meade KP, Lee B, Dunlap B (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine (Phila Pa 1976) 24(10):1003–1009

    Article  Google Scholar 

  139. Patwardhan AG, Havey RM, Carandang G, Simonds J, Voronov LI, Ghanayem AJ, Meade KP, Gavin TM, Paxinos O (2003) Effect of compressive follower preload on the flexion-extension response of the human lumbar spine. J Orthop Res 21(3):540–546

    Google Scholar 

  140. Pearcy MJ, Tibrewal SB (1984) Axial rotation and lateral bending in the normal lumbar spine measured by three-dimensional radiography. Spine (Phila Pa 1976) 9(6):582–587

    Article  Google Scholar 

  141. Pearcy M, Portek I, Shepherd J (1985) The effect of low-back pain on lumbar spinal movements measured by three-dimensional X-ray analysis. Spine (Phila Pa 1976) 10(2):150–153

    Google Scholar 

  142. Penning L (1968) Functional pathology of the cervical spine. Excerpta Medica, Amsterdam

    Google Scholar 

  143. Perey O (1957) Fracture of the vertebral end-plate in the lumbar spine. Acta Orthop Scand 25(Suppl):1–101

    Article  CAS  Google Scholar 

  144. Polga DJ, Beaubien BP, Kallemeier PM, Schellhas KP, Lew WD et al (2004) Measurement of in vivo intradiscal pressure in healthy thoracic intervertebral discs. Spine (Phila Pa 1976) 29(12):1320–1324

    Article  Google Scholar 

  145. Pope MH (2005) Giovanni Alfonso Borelli-the father of biomechanics. Spine 30:2350–2355

    Article  PubMed  Google Scholar 

  146. Posner I, White AA 3rd, Edwards WT, Hayes WC (1982) Biomechanical analysis of the clinical stability of the lumbar and lumbosacral spine. Spine (Phila Pa 1976) 7(4):374–389

    Article  Google Scholar 

  147. Provencher MT, Abdu WA (2000) Giovanni Alfonso Borelli: “Father of spinal biomechanics.” Spine 25:131–136

    Article  CAS  PubMed  Google Scholar 

  148. Radebold A, Cholewicki J, Polzhofer GK, Greene HS (2001) Impaired postural control of the lumbar spine is associated with delayed muscle response times in patients with chronic idiopathic low back pain. Spine (Phila Pa 1976) 26(7):724–730

    Article  Google Scholar 

  149. Rapoff AJ, Ghanayem AJ, Zdeblick TA (1997) Biomechanical comparison of posterior lumbar interbody fusion cages. Spine (Phila Pa 1976) 22(20):2375–2379

    Article  CAS  Google Scholar 

  150. Rauber A (1876) Elastizität und Festigkeit der Knochen. Engelmann, Leipzig

    Google Scholar 

  151. Reeves NP, Cholewicki J (2010) Expanding our view of the spine system. Eur Spine J 19(2):331–332

    Article  Google Scholar 

  152. Reeves NP, Narendra KS, Cholewicki J (2007) Spine stability: the six blind men and the elephant. Clin Biomech (Bristol, Avon) 22(3):266–274. (Epub 2007 Jan 8. Review)

    Google Scholar 

  153. Roaf R (1960) A study of the mechanics of spinal injuries. J Bone Joint Surg 42B:810–823

    Google Scholar 

  154. Rohlmann A, Bergmann G, Graichen F (1994) A spinal fixation device for in vivo load measurement. J Biomech 27(7):961–967

    Article  Google Scholar 

  155. Rohlmann A, Bergmann G, Graichen F (1997) Loads on an internal spinal fixation device during walking. J Biomech 30(1):41–47

    Article  Google Scholar 

  156. Rohlmann A, Gabel U, Graichen F, Bender A, Bergmann G (2007) An instrumented implant for vertebral body replacement that measures loads in the anterior spinal column. Med Eng Phys 29(5):580–585

    Article  Google Scholar 

  157. Rohlmann A, Graichen F, Kayser R, Bender A, Bergmann G (2008) Loads on a telemeterized vertebral body replacement measured in two patients. Spine (Phila Pa 1976) 33(11):1170–1179

    Article  Google Scholar 

  158. Roussouly P, Pinheiro-Franco JL (2011) Sagittal parameters of the spine: biomechanical approach. Eur Spine J 20(Suppl 5):578–585

    Google Scholar 

  159. Ruff S (1950) Brief acceleration: less than one second, in German Aviation Medicine, World War II, BD I, chapter VI-C. United States Government Printing Office, Washington, DC, pp 584–597

    Google Scholar 

  160. Sanan A, Rengachary SS (1996) The history of spinal biomechanics. Neurosurgery 39:657–669

    Article  CAS  PubMed  Google Scholar 

  161. Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine (Phila Pa 1976) 24(23):2468–2474

    Article  Google Scholar 

  162. Schiötz EH, Cyriax J (1975) Manipulation Past and Present. William Heinemann, London

    Google Scholar 

  163. Schmidt H, Galbusera F, Rohlmann A, Shirazi-Adl A (2013) What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades? J Biomech 46(14):2342–2355

    Article  PubMed  Google Scholar 

  164. Schmorl G, Junghanns H (1951) Die gesunde und kranke Wirbelsäule in Röntgenbild und Klinik. Thieme, Stuttgart

    Google Scholar 

  165. Schultz AB, Galante JO (1970) A mathematical model for the study of the mechanics of the human vertebral column. J Biomech 3(4):405–16

    Article  CAS  PubMed  Google Scholar 

  166. Schultz AB, Andersson GB (1981) Analysis of loads on the lumbar spine. Spine (Phila Pa 1976) 6(1):76–82

    Article  CAS  Google Scholar 

  167. Shirazi-Adl A, Parnianpour M (1993) Nonlinear response analysis of the human ligamentous lumbar spine in compression. On mechanisms affecting the postural stability. Spine (Phila Pa 1976) 18(1):147–158

    Article  Google Scholar 

  168. Shirazi-Adl SA, Shrivastava SC, Ahmed AM (1984) Stress analysis of the lumbar disc-body unit in compression: a three-dimensional nonlinear finite element study. Spine 9(2):120

    Article  CAS  PubMed  Google Scholar 

  169. Shirazi-Adl A, El-Rich M, Pop DG, Parnianpour M (2005 ) Spinal muscle forces, internal loads and stability in standing under various postures and loads–application of kinematics-based algorithm. Eur Spine J 14(4):381–392

    Article  Google Scholar 

  170. Smeathers JE, Joanes DN (1988) Dynamic compressive properties of human lumbar intervertebral joints: a comparison between fresh and thawed specimens. J Biomech 21(5):425–433

    Article  Google Scholar 

  171. Steinberger J, Skovrlj B, Caridi JM, Cho SK (2015) The top 100 classic papers in lumbar spine surgery. Spine (Phila Pa 1976) 40(10):740–747

    Article  Google Scholar 

  172. Stokes IA, Gardner-Morse M (1995) Stability increase of the lumbar spine with different muscle groups: a biomechanical in vitro study. Spine (Phila Pa 1976) 20(19):2168–2169

    Article  Google Scholar 

  173. Tencer A, Ahmed A, Burke D (1982) Some static mechanical properties of the lumbar intervertebral joint, intact and injured. J Biomech Eng 104(3):193

    Article  CAS  PubMed  Google Scholar 

  174. Tencer AF, Hampton D, Eddy S (1995) Biomechanical properties of threaded inserts for lumbar interbody spinal fusion. Spine (Phila Pa 1976) 20(22):2408–2414

    Google Scholar 

  175. Tkaczuk H (1968) Tensile properties of human lumbar longitudinal ligaments. Acta Orthop Scand 115(Suppl):1–69

    Article  Google Scholar 

  176. Truumees E (2015) A history of lumbar disc herniation from Hippocrates to the 1990s. Clin Orthop Relat Res 473(6):1885–1895

    Google Scholar 

  177. Veres SP, Robertson PA, Broom ND (2009) The morphology of acute disc herniation: a clinically relevant model defining the role of flexion. Spine (Phila Pa 1976) 34(21):2288–2296

    Article  Google Scholar 

  178. Virchow H (1928) Die sagittal-flexorische Bewegung der Menschen Halswirbelsaule. Arch Orthop Chir 26:1–42

    Article  Google Scholar 

  179. Virgin W (1951) Experimental investigations into physical properties of intervertebral disc. J Bone Joint Surg 33B:607

    Google Scholar 

  180. Volkheimer D, Malakoutian M, Oxland TR, Wilke HJ (2015) Limitations of current in vitro test protocols for investigation of instrumented adjacent segment biomechanics: critical analysis of the literature. Eur Spine J 24(9):1882–1892

    Article  PubMed  Google Scholar 

  181. Volkmann AW (1872) Von der Drehbewegung des Körpers. Arch Pathol Anat Physiol Klin Med 56(4):467–504

    Article  Google Scholar 

  182. Wade KR, Robertson PA, Thambyah A, Broom ND (2014) How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion. Spine (Phila Pa 1976) 39(13):1018–1028

    Article  Google Scholar 

  183. Weber W, Weber E (1836) Mechanik der menschlichen Gehwerkzeuge. W Fischer-Verlag, Göttingen, Dieterich

    Google Scholar 

  184. Weinhoffer SL, Guyer RD, Herbert M, Griffith SL (1995) Intradiscal pressure measurements above an instrumented fusion. A cadaveric study. Spine (Phila Pa 1976) 20(5):526–531

    Article  Google Scholar 

  185. Wen N, Lavaste F, Santin JJ, Lassau JP (1993) Three-dimensional biomechanical properties of the human cervical spine in vitro. I. Analysis of normal motion. Eur Spine J 2(1):2–11

    Article  CAS  PubMed  Google Scholar 

  186. Werne S (1957) Studies in spontaneous atlas dislocation. Acta Orthop Scand Suppl 23:1–150

    CAS  PubMed  Google Scholar 

  187. White AA 3rd (1969) Analysis of the mechanics of the thoracic spine in man. An experimental study of autopsy specimens. Acta Orthop Scand Suppl 127:1–105

    Article  PubMed  Google Scholar 

  188. White AA, Hirsch C (1971) The significance of the vertebral posterior elements in the mechanics of the thoracic spine. Clin Orthop 81:2

    Article  PubMed  Google Scholar 

  189. White AA, Panjabi MM (1978) Clinical Biomechanics of the Spine. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  190. Wilke HJ, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3(2):91–97

    Article  Google Scholar 

  191. Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila Pa 1976) 24(8):755–762

    Article  Google Scholar 

  192. Wilke HJ, Wolf S, Claes LE, Arand M, Wiesend A (1995) Stability increase of the lumbar spine with different muscle groups A biomechanical in vitro study. Spine (Phila Pa 1976) 20(2):192–198

    Article  CAS  Google Scholar 

  193. Wolff J (1892) Das Gesetz der Transformation der Knochen. A Hirschwald, Berlin

    Google Scholar 

  194. Yang K, King A (1984) Volvo award in biomechanics: mechanism of facet load transmission as a hypothesis for low-back pain. Spine 9(6):557

    Article  CAS  PubMed  Google Scholar 

  195. Zdeblick TA, Abitbol JJ, Kunz DN, McCabe RP, Garfin S (1993a) Cervical stability after sequential capsule resection. Spine (Phila Pa 1976) 18(14):2005–2008

  196. Zdeblick TA, Warden KE, Zou D, McAfee PC, Abitbol JJ (1993b) Anterior spinal fixators. A biomechanical in vitro study. Spine (Phila Pa 1976) 18(4):513–517

Download references

Acknowledgments

The author wishes to thank Professor Manohar Panjabi, Professor Hans-Joachim Wilke, and Mr. Masoud Malakoutian for their constructive comments on the manuscript. In addition, the author thanks the Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes of Health Research for long-term research support at the University of British Columbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.R. Oxland PhD PEng.

Ethics declarations

Conflict of interest

T.R. Oxland states that there are no conflicts of interest.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

This article is part of a supplement sponsored by SIGNUS Medizintechnik GmbH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oxland, T. A history of spine biomechanics. Unfallchirurg 118 (Suppl 1), 80–92 (2015). https://doi.org/10.1007/s00113-015-0087-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-015-0087-7

Keywords

Schlüsselwörter

Navigation