Skip to main content

Advertisement

Log in

Etiopathogenesis of medication-related osteonecrosis of the jaws: a review

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

This study compiles the main hypotheses involved in the etiopathogenesis of medication-related osteonecrosis of the jaw (MRONJ). A narrative review of the literature was performed. The etiopathogenesis of MRONJ is multifactorial and not fully understood. The main hypothesis considers the disturbance of bone turnover caused by anti-resorptive drugs. Bisphosphonates and denosumab inhibit osteoclast activity through different action mechanisms, accumulating bone microfracture. Other hypotheses also consider oral infection and inflammation, the antiangiogenic effect and soft tissue toxicity of bisphosphonates, and the inhibition of lymphangiogenesis. Knowledge of the current theories for MRONJ is necessary to define future studies and protocols to minimize the incidence of this severe condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ruggiero SL, Dodson TB, Aghaloo T, Carlson ER, Ward BB, Kademani D (2022) American Association of Oral and maxillofacial surgeons’ position paper on medication-related osteonecrosis of the Jaws—2022 Update. JOMS 80(5):920–943. https://doi.org/10.1016/j.joms.2022.02.008

    Article  Google Scholar 

  2. Soares AL, Simon S, Gebrim LH, Nazário ACP, Lazaretti-Castro M (2020) Prevalence and risk factors of medication-related osteonecrosis of the jaw in osteoporotic and breast cancer patients: a cross-sectional study. Support Care Cancer 28(5):2265–2271. https://doi.org/10.1007/s00520-019-05044-0

    Article  PubMed  Google Scholar 

  3. Kim R, Kim SW, Kim H, Ku SY (2022) The impact of sex steroids on osteonecrosis of the jaw. Osteoporos Sarcopenia 8(2):58–67. https://doi.org/10.1016/j.afos.2022.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ervolino E et al (2019) Antimicrobial photodynamic therapy improves the alveolar repair process and prevents the occurrence of osteonecrosis of the jaws after tooth extraction in senile rats treated with zoledronate. Bone 120(June 2018):101–113. https://doi.org/10.1016/j.bone.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  5. Sims NA, Martin TJ (2020) Osteoclasts provide coupling signals to osteoblast lineage cells through multiple mechanisms. Annu Rev Physiol 82:507–529. https://doi.org/10.1146/annurev-physiol-021119-034425

    Article  CAS  PubMed  Google Scholar 

  6. Ruggiero SL, Fantasia J, Carlson E (2006) Bisphosphonate-related osteonecrosis of the jaw: background and guidelines for diagnosis, staging and management. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102(4):433–441. https://doi.org/10.1016/j.tripleo.2006.06.004

    Article  PubMed  Google Scholar 

  7. Russell RGG, Watts NB, Ebetino FH, Rogers MJ (2008) Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 19(6):733–759. https://doi.org/10.1007/s00198-007-0540-8

    Article  CAS  PubMed  Google Scholar 

  8. Acil Y, Weitkamp JT, Wieker H, Flörke C, Wiltfang J, Gülses A (2022) Organic Bone Matrix component type I and V Collagen are not destructed in Bisphosphonate-Associated Osteonecrosis of the Jaws. Med (Kaunas) 58(11):1690. https://doi.org/10.3390/medicina58111690

    Article  Google Scholar 

  9. Heymann D, Ory B, Gouin F, Green JR, Rédini F (2004) Bisphosphonates: new therapeutic agents for the treatment of bone tumors. Trends Mol Med 10(7):337–343. https://doi.org/10.1016/j.molmed.2004.05.007

    Article  CAS  PubMed  Google Scholar 

  10. Widler L et al (2002) Highly potent geminal bisphosphonates. From pamidronate disodium (Aredia) to zoledronic acid (Zometa). J Med Chem, 45(17), 3721–3738. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12166945

  11. Lin JH (1996) Bisphosphonates: a review of their pharmacokinetic properties. Bone 18(2):75–85. https://doi.org/10.1016/8756-3282(95)00445-9

    Article  CAS  PubMed  Google Scholar 

  12. Rogers MJ, Mönkkönen J, Munoz MA (2020) Molecular mechanisms of action of bisphosphonates and new insights into their effects outside the skeleton. Bone 139:115493. https://doi.org/10.1016/j.bone.2020.115493

    Article  CAS  PubMed  Google Scholar 

  13. Lasseter KC et al (2005) Pharmacokinetic considerations in determining the terminal elimination half-lives of bisphosphonates. Clin Drug Investig 25(2):107–114. https://doi.org/10.2165/00044011-200525020-00003

    Article  CAS  PubMed  Google Scholar 

  14. Pittman K, Antill YC, Goldrick A, Goh J, de Boer RH (2017) Denosumab: Prevention and management of hypocalcemia, osteonecrosis of the jaw and atypical fractures. Asia-Pac J Clin Oncol 13(4):266–276. https://doi.org/10.1111/ajco.12517

    Article  PubMed  Google Scholar 

  15. De Leon-Oliva D, Barrena-Blázquez S, Jiménez-Álvarez L et al (2023) The RANK-RANKL-OPG System: A Multifaceted Regulator of Homeostasis, immunity, and Cancer. Med (Kaunas) 59(10):1752. https://doi.org/10.3390/medicina59101752

    Article  Google Scholar 

  16. Nagy V, Penninger JM (2015) The RANKL-RANK story. Gerontology 61(6):534–542. https://doi.org/10.1159/000371845

    Article  CAS  PubMed  Google Scholar 

  17. He L, Sun X, Liu Z, Qiu Y, Niu Y (2020) Pathogenesis and multidisciplinary management of medication-related osteonecrosis of the jaw. Int J Oral Sci 12(1):1–11. https://doi.org/10.1038/s41368-020-00093-2

    Article  Google Scholar 

  18. Kendler DL, Cosman F, Stad RK, Ferrari S (2022) Denosumab in the treatment of osteoporosis: 10 years later: a narrative review. Adv Ther 39(1):58–74. https://doi.org/10.1007/s12325-021-01936-y

    Article  PubMed  Google Scholar 

  19. Avishai G, Muchnik D, Masri D, Zlotogorski-Hurvitz A, Chaushu L (2022) Minimizing MRONJ after tooth extraction in Cancer patients receiving bone-modifying agents. J Clin Med 11(7). https://doi.org/10.3390/jcm11071807

  20. Lee D et al (2016) Inhibition of Osteoclast differentiation and bone resorption by bisphosphonate-conjugated gold nanoparticles. Sci Rep 6:1–11. https://doi.org/10.1038/srep27336

    Article  CAS  Google Scholar 

  21. Aghaloo T, Hazboun R, Tetradis S (2015) Pathophysiology of osteonecrosis of the Jaws. Oral Maxillofac Surg Clin North Am 27(4):489–496. https://doi.org/10.1016/j.coms.2015.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tempesta A, Capodiferro S, Di Nanna S et al (2023) Medication-related osteonecrosis of the jaw triggered by endodontic failure in oncologic patients. Oral Dis 29(7):2799–2805. https://doi.org/10.1111/odi.14449

    Article  PubMed  Google Scholar 

  23. Abtahi J, Agholme F, Sandberg O, Aspenberg P (2012) Bisphosphonate-induced osteonecrosis of the jaw in a rat model arises first after the bone has become exposed. No primary necrosis in unexposed bone. J Oral Pathol Med 41(6):494–499. https://doi.org/10.1111/j.1600-0714.2011.01125.x

    Article  CAS  PubMed  Google Scholar 

  24. Singh M, Gonegandla GS (2019) Bisphosphonate-Induced Osteonecrosis of the Jaws (BIONJ). J Maxillofac Oral Surg 19(2):162–167. https://doi.org/10.1007/s12663-019-01211-2

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mu H, Pang Y, Liu L, Liu J, Liu C (2023) Clinical values of serum Semaphorin 4D (Sema4D) in medication–related osteonecrosis of the jaw. Eur J Med Res, Mar 30;28(1):140. https://doi.org/10.1186/s40001-023-01095-6

  26. Funayama N, Yagyuu T, Imada M, Ueyama Y, Nakagawa Y, Kirita T (2023) Impact of beta-tricalcium phosphate on preventing tooth extraction-triggered bisphosphonate-related osteonecrosis of the jaw in rats. Sci Rep 13(1):16032. https://doi.org/10.1038/s41598-023-43315-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Okawa H, Kondo T, Hokugo A et al (2022) Mechanism of bisphosphonate-related osteonecrosis of the jaw (BRONJ) revealed by targeted removal of legacy bisphosphonate from jawbone using competing inert hydroxymethylene diphosphonate. Elife Aug 2611:e76207. https://doi.org/10.7554/eLife.76207

    Article  Google Scholar 

  28. Soma T, Iwasaki R, Sato Y et al (2022) Osteonecrosis development by tooth extraction in zoledronate treated mice is inhibited by active vitamin D analogues, anti-inflammatory agents or antibiotics. Sci Rep 12(1):19. https://doi.org/10.1038/s41598-021-03966-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435. https://doi.org/10.1038/nature07201

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Hasegawa T et al (2019) Medication-related osteonecrosis of the jaw after tooth extraction in cancer patients: a multicenter retrospective study. Osteoporos Int 30(1):231–239. https://doi.org/10.1007/s00198-018-4746-8

    Article  CAS  PubMed  Google Scholar 

  31. Moreno-Rabié C et al (2022) Radiographic predictors for MRONJ in oncologic patients undergoing tooth extraction. Sci Rep 12:11280. https://doi.org/10.1038/s41598-022-15254-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Soutome S, Hayashida S, Funahara M et al (2018) Factors affecting development of medication-related osteonecrosis of the jaw in cancer patients receiving high-dose bisphosphonate or denosumab therapy: Is tooth extraction a risk factor? PLoS One. 2018;13(7):e0201343. https://doi.org/10.1371/journal.pone.0201343

  33. Tsurushima H, Kokuryo S, Sakaguchi O, Tanaka J, Tominaga K (2013) Bacterial promotion of bisphosphonate-induced osteonecrosis in Wistar rats. Int J Oral Maxillofac Surg 42(11):1481–1487. https://doi.org/10.1016/j.ijom.2013.06.011

    Article  CAS  PubMed  Google Scholar 

  34. Wu S, Li F, Tan J, Ye X, Le Y, Liu N, Everts V, Wan Q (2022) Porphyromonas gingivalis induces bisphosphonate-related osteonecrosis of the Femur in mice. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2022.886411

    Article  PubMed  PubMed Central  Google Scholar 

  35. Otto S et al (2010) Bisphosphonate-related osteonecrosis of the Jaw: is pH the Missing Part in the Pathogenesis Puzzle? J Oral Maxillofac Surg 68(5):1158–1161. https://doi.org/10.1016/j.joms.2009.07.079

    Article  PubMed  Google Scholar 

  36. Lima WJM, Pontes JCX, Figueiredo LS, Araújo RDS, Paiva Sousa MC, Aquino JS, Castro RD, Alves AF (2023) Obesity influences the development of bisphosphonate-induced osteonecrosis in Wistar rats. J Appl Oral Sci. https://doi.org/10.1590/1678-7757-2023-0133

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schwech N, Nilsson J, Gabre P (2023) Incidence and risk factors for medication-related osteonecrosis after tooth extraction in cancer patients—A systematic review. Clin Exp Dent Res 9(1):55–65. https://doi.org/10.1002/cre2.698

    Article  PubMed  Google Scholar 

  38. Soundia A et al (2016) Osteonecrosis of the jaws (ONJ) in mice after extraction of teeth with periradicular disease. Bone 90:133–141. https://doi.org/10.1016/j.bone.2016.06.011

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hadaya D, Soundia A, Gkouveris I, Dry SM, Aghaloo TL, Tetradis S (2019) Development of medication-related osteonecrosis of the Jaw after extraction of Teeth with Experimental Periapical Disease. J Oral Maxillofac Surg 77(1):71–86. https://doi.org/10.1016/j.joms.2018.08.010

    Article  PubMed  Google Scholar 

  40. Du W, Yang M, Kim T et al (2022) Indigenous microbiota protects development of medication-related osteonecrosis induced by periapical disease in mice. Int J Oral Sci 14:16. https://doi.org/10.1038/s41368-022-00166-4

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dayisoylu EH, Üngör C, Tosun E, Ersöz S, Duman MK, Taskesen F, Şenel FÇ (2014) Does an alkaline environment prevent the development of bisphosphonate-related osteonecrosis of the jaw? An experimental study in rats. Oral Surg Oral Med Oral Pathol Oral Radiol 117(3):329–334. https://doi.org/10.1016/j.oooo.2013.11.490

    Article  PubMed  Google Scholar 

  42. Hansen T, Kunkel M, Springer E, Walter C, Weber A, Siegel E, Kirkpatrick CJ (2007) Actinomycosis of the jaws - histopathological study of 45 patients shows significant involvement in bisphosphonate-associated osteonecrosis and infected osteoradionecrosis. Virchows Arch 451(6):1009–1017. https://doi.org/10.1007/s00428-007-0516-2

    Article  PubMed  Google Scholar 

  43. Kuroshima S, Al-Omari FA, Sasaki M, Sawase T (2022) Medication-related osteonecrosis of the jaw: a literature review and update. Genesis (United States) 60(8–9):1–18. https://doi.org/10.1002/dvg.23500

    Article  CAS  Google Scholar 

  44. Filleul O, Crompot E, Saussez S (2010) Bisphosphonate-induced osteonecrosis of the jaw: a review of 2,400 patient cases. J Cancer Res Clin Oncol 136(8):1117–1124. https://doi.org/10.1007/s00432-010-0907-7

    Article  CAS  PubMed  Google Scholar 

  45. López-Jornet P, Camacho-Alonso F, Martínez-Canovas A, Molina-Miano F, Gómez-García F, Vicente-Ortega V (2011) Perioperative antibiotic regimen in rats treated with pamidronate plus dexamethasone and subjected to dental extraction: a study of the changes in the jaws. J Oral Maxillofac Surg 69(10):2488–2493. https://doi.org/10.1016/j.joms.2011.02.059

    Article  PubMed  Google Scholar 

  46. Abtahi J, Agholme F, Aspenberg P (2013) Prevention of osteonecrosis of the jaw by mucoperiosteal coverage in a rat model. Int J Oral Maxillofac Surg 42(5):632–636. https://doi.org/10.1016/j.ijom.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  47. Ervolino E et al (2022) Effectiveness of antimicrobial photodynamic therapy mediated by butyl toluidine blue in preventing medication-related osteonecrosis of the jaws in rats. Photodiagnosis Photodyn Ther 40. https://doi.org/10.1016/j.pdpdt.2022.103172

  48. Silva PG, de B et al (2022) Photodynamic therapy and photobiomodulation therapy in zoledronic acid-induced osteonecrosis in rats. Photodiagnosis Photodyn Ther 38. https://doi.org/10.1016/j.pdpdt.2022.102889

  49. Zheng Y, Dong X, Chen S, He Y, An J, Liu M, He L, Zhang Y (2023) Low-level laser therapy prevents medication-related osteonecrosis of the jaw-like lesions via IL-1RA-mediated primary gingival wound healing. BMC Oral Health 23(1):14. https://doi.org/10.1186/s12903-022-02678-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Troeltzsch M, Zeiter S, Arens D, Nehrbass D, Probst FA, Liokatis P, Ehrenfeld M, Otto S (2023) Chronic Periodontal infection and not iatrogenic interference is the trigger of medication-related osteonecrosis of the Jaw: insights from a large animal study (PerioBRONJ Pig Model). Med (Kaunas) 59(5):1000. https://doi.org/10.3390/medicina59051000

    Article  Google Scholar 

  51. Lesclous P et al (2009) Bisphosphonate-associated osteonecrosis of the jaw: a key role of inflammation? Bone 45(5):843–852. https://doi.org/10.1016/j.bone.2009.07.011

    Article  CAS  PubMed  Google Scholar 

  52. Kwoen MJ, Park JH, Kim KS, Lee JR, Kim JW, Lee H, Lee HJ (2023) Association between periodontal disease, tooth extraction, and medication-related osteonecrosis of the jaw in women receiving bisphosphonates: a national cohort-based study. J Periodontol 94(1):98–107. https://doi.org/10.1002/JPER.21-0611

    Article  CAS  PubMed  Google Scholar 

  53. Kobayashi Y et al (2010) Zoledronic acid delays wound healing of the tooth extraction socket, inhibits oral epithelial cell migration, and promotes proliferation and adhesion to hydroxyapatite of oral bacteria, without causing osteonecrosis of the jaw, in mice. J Bone Miner Metab 28(2):165–175. https://doi.org/10.1007/s00774-009-0128-9

    Article  CAS  PubMed  Google Scholar 

  54. Aguirre JI, Castillo EJ, Kimmel DB (2021) Biologic and pathologic aspects of osteocytes in the setting of medication-related osteonecrosis of the jaw (MRONJ). Bone 153(352):1–37. https://doi.org/10.1016/j.bone.2021.116168

    Article  CAS  Google Scholar 

  55. Fusco V et al (2015) Osteonecrosis of the Jaw in patients with metastatic renal cell Cancer treated with bisphosphonates and targeted agents: results of an Italian Multicenter Study and Review of the literature. Clin Genitourin Cancer 13(4):287–294. https://doi.org/10.1016/j.clgc.2014.12.002

    Article  PubMed  Google Scholar 

  56. Tonnesen MG, Feng X, Clark RAF (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5(1):40–46. https://doi.org/10.1046/j.1087-0024.2000.00014.x

    Article  CAS  PubMed  Google Scholar 

  57. Lee RS, Sohn S, Shin KH, Kang MK, Park NH, Kim RH (2017) Bisphosphonate inhibits the expression of cyclin A2 at the transcriptional level in normal human oral keratinocytes. Int J Mol Med 40(3):623–630. https://doi.org/10.3892/ijmm.2017.3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao D, Xiao D, Liu M, Li J, Peng S, He Q, Sun Y, Xiao J, Lin Y (2022) Tetrahedral framework nucleic acid carrying angiogenic peptide prevents bisphosphonate-related osteonecrosis of the jaw by promoting angiogenesis. Int J Oral Sci 14(1):23. https://doi.org/10.1038/s41368-022-00171-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ogata K et al (2015) Evaluation of the therapeutic effects of conditioned media from mesenchymal stem cells in a rat bisphosphonate-related osteonecrosis of the jaw-like model. Bone 74:95–105. https://doi.org/10.1016/j.bone.2015.01.011

    Article  CAS  PubMed  Google Scholar 

  60. Gao SY et al (2021) PDGF-BB exhibited therapeutic effects on rat model of bisphosphonate-related osteonecrosis of the jaw by enhancing angiogenesis and osteogenesis. Bone 144:115117. https://doi.org/10.1016/j.bone.2019.115117

    Article  CAS  PubMed  Google Scholar 

  61. Pabst AM, Ziebart T, Ackermann M, Konerding MA, Walter C (2014) Bisphosphonates’ antiangiogenic potency in the development of bisphosphonate-associated osteonecrosis of the jaws: influence on microvessel sprouting in an in vivo 3D Matrigel assay. Clin Oral Investig 18(3):1015–1022. https://doi.org/10.1007/s00784-013-1060-x

    Article  CAS  PubMed  Google Scholar 

  62. Stresing V et al (2011) Nitrogen-containing bisphosphonates can inhibit angiogenesis in vivo without the involvement of farnesyl pyrophosphate synthase. Bone 48(2):259–266. https://doi.org/10.1016/j.bone.2010.09.035

    Article  CAS  PubMed  Google Scholar 

  63. Duygu G, Yalcin-Ülker GM, Günbatan M, Soluk-Tekkesin M, Özcakir-Tomruk C (2023) Evaluation of Preventive Role of Systemically Applied erythropoietin after tooth extraction in a Bisphosphonate-Induced MRONJ Model. Med (Kaunas) 59(6):1059. https://doi.org/10.3390/medicina59061059

    Article  Google Scholar 

  64. Hayano H, Kuroshima S, Sasaki M, Tamaki S, Inoue M, Ishisaki A, Sawase T (2020) Distinct immunopathology in the early stages between different antiresorptives-related osteonecrosis of the jaw-like lesions in mice. Bone, 135(September 2019), 115308. https://doi.org/10.1016/j.bone.2020.115308

  65. Vallina C, Ramírez L, Torres J, Casañas E, Hernández G, López-Pintor RM (2019) Osteonecrosis of the jaws produced by sunitinib: a systematic review. Med Oral Patol Oral Cir Bucal 24(3):e326–e338. https://doi.org/10.4317/medoral.22858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chim SM, Tickner J, Chow ST, Kuek V, Guo B, Zhang G, Rosen V, Erber W, Xu J (2013) Angiogenic factors in bone local environment. Cytokine Growth Factor Ver 24(3):297–310. https://doi.org/10.1016/j.cytogfr.2013.03.008

    Article  CAS  Google Scholar 

  67. Misso G et al (2012) Evaluation of the in vitro and in vivo antiangiogenic effects of denosumab and zoledronic acid. Cancer Biol Ther 13(14):1491–1500. https://doi.org/10.4161/cbt.22274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Badel T, Pavicin IS, Carek AJ, Rosin-Grget K, Grbesa D (2013) Pathophysiology of osteonecrosis of the jaw in patients treated with bisphosphonate. Coll Antropol, 37(2), 645–651. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23941019

  69. Khan AA et al (2015) Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Miner Res 30(1):3–23. https://doi.org/10.1002/jbmr.2405

    Article  PubMed  Google Scholar 

  70. Soki FN, Li X, Berry J, Koh A, Sinder BP, Qian X, Kozloff KM, Taichman RS, McCauley LK (2013) The effects of zoledronic acid in the bone and vasculature support of hematopoietic stem cell niches. J Cell Biochem Jan 114(1):67–78. https://doi.org/10.1002/jcb.24301

    Article  CAS  Google Scholar 

  71. Kuroshima S, Sasaki M, Sawase T (2019) Medication-related osteonecrosis of the jaw: a literature review. J Oral Biosci 61(2):99–104. https://doi.org/10.1016/j.job.2019.03.005

    Article  PubMed  Google Scholar 

  72. Guarneri V et al (2010) Bevacizumab and osteonecrosis of the jaw: incidence and association with bisphosphonate therapy in three large prospective trials in advanced breast cancer. Breast Cancer Res Treat 122(1):181–188. https://doi.org/10.1007/s10549-010-0866-3

    Article  CAS  PubMed  Google Scholar 

  73. Sobczak-Jaskow H, Kochańska B, Drogoszewska B (2023) A study of oral Health parameters and the properties and Composition of Saliva in Oncological patients with and without medication-related osteonecrosis of the Jaw who take bisphosphonates. Med (Kaunas) 59(6):1073. https://doi.org/10.3390/medicina59061073

    Article  Google Scholar 

  74. Kabilova TO et al (2014) Immunotherapy of hepatocellular carcinoma with small double-stranded RNA. BMC Cancer 14:338. https://doiorg.ez47.periodicos.capes.gov.br/https://doi.org/10.1186/1471-2407-14-338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang W et al (2021) The role of the Immune response in the development of medication-related osteonecrosis of the Jaw. Front Immunol 12(February):1–12. https://doi.org/10.3389/fimmu.2021.606043

    Article  CAS  Google Scholar 

  76. Roato I, Pavone L, Pedraza R, Bosso I, Baima G, Erovigni F, Mussano F (2023) Denosumab and Zoledronic Acid differently affect circulating Immune subsets: a possible role in the Onset of MRONJ. Cells 12(20):2430. https://doi.org/10.3390/cells12202430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Qu X, Wang Z, Zhou T, Shan L (2020) Determination of the molecular mechanism by which macrophages and y6-T cells contribute to ZOL-induced ONJ. Aging 12(20):20743–20752. https://doi.org/10.18632/aging.104006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kikuiri T et al (2010) Cell-based immunotherapy with mesenchymal stem cells cures bisphosphonate-related osteonecrosis of the jaw-like disease in mice. J Bone Miner Res 25(7):1668–1679. https://doi.org/10.1002/jbmr.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gómez-Aleza C, Nguyen B, Yoldi G (2020) Inhibition of RANK signaling in breast cancer induces an anti-tumor immune response orchestrated by CD8 + T cells. Nat Commun 11(1):6335. https://doi.org/10.1038/s41467-020-20138-8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Walsh MC, Choi Y (2021) Regulation of T cell-associated tissues and T cell activation by RANKL-RANK-OPG. J Bone Miner Metab 39(1):54–63. https://doi.org/10.1007/s00774-020-01178-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kalyan S It may seem inflammatory, but some T cells are innately healing to the bone (2016). J Bone Miner Res, 31(11):1997–2000. https://doi.org/10.1002/jbmr.2875

  82. Muro R, Takayanagi H, Nitta T (2019) T cell receptor signaling for γδT cell development. Inflamm Regener 39(1):1–11. https://doi.org/10.1186/s41232-019-0095-z

    Article  Google Scholar 

  83. Kalyan S, Quabius ES, Wiltfang J, Mönig H, Kabelitz D (2013) Can peripheral blood γδ T cells predict osteonecrosis of the jaw? An immunological perspective on the adverse drug effects of aminobisphosphonate therapy. J Bone Miner Res 28(4):728–735. https://doi.org/10.1002/jbmr.1769

    Article  CAS  PubMed  Google Scholar 

  84. Bain CC, Mowat AM (2014) Macrophages in intestinal homeostasis and inflammation. Immunol Rev 260(1):102–117. https://doi.org/10.1111/imr.12192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2017) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. Dec 14;9(6):7204–7218. https://doi.org/10.18632/oncotarget.23208

  86. Hoefert S, Schmitz I, Weichert F, Gaspar M, Eufinger H (2015a) Macrophages and bisphosphonate-related osteonecrosis of the jaw (BRONJ): evidence of local immunosuppression of macrophages in contrast to other infectious jaw diseases. Clin Oral Investig 19(2):497–508. https://doi.org/10.1007/s00784-014-1273-7

    Article  PubMed  Google Scholar 

  87. Shapouri-Moghaddam A et al (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233(9):6425–6440. https://doi.org/10.1002/jcp.26429

    Article  CAS  PubMed  Google Scholar 

  88. Paschalidi P et al (2021) The role of M1 and M2 macrophage polarization in progression of medication-related osteonecrosis of the jaw. Clin Oral Investig 25(5):2845–2857. https://doi.org/10.1007/s00784-020-03602-z

    Article  PubMed  Google Scholar 

  89. Hoefert S et al (2016) Effect of bisphosphonates on macrophagic THP-1 cell survival in bisphosphonate-related osteonecrosis of the jaw (BRONJ). Oral Surg Oral Med Oral Pathol Oral Radiol 121(3):222–232. https://doi.org/10.1016/j.oooo.2015.10.008. (A)

    Article  PubMed  Google Scholar 

  90. Hoefert S, Hoefert CS, Albert M, Munz A, Grimm M, Northoff H, Reinert S, Alexander D (2015b) Zoledronate but not denosumab suppresses macrophagic differentiation of THP-1 cells. An aetiologic model of bisphosphonate-related osteonecrosis of the jaw (BRONJ). Clin Oral Investig 19(6):1307–1318. https://doi.org/10.1007/s00784-014-1358-3

    Article  PubMed  Google Scholar 

  91. Tamaki S, Kuroshima S, Hayano H, Nakajima K, Kakehashi H, Ishisaki A, Sawase T (2020) Dynamic polarization shifting from M1 to M2 macrophages in reduced osteonecrosis of the jaw-like lesions by cessation of anti-RANKL antibody in mice. Bone, 141(December 2019), 115560. https://doi.org/10.1016/j.bone.2020.115560

  92. Srivichit B, Thonusin C, Chattipakorn N, Chattipakorn SC (2022) Impacts of bisphosphonates on the bone and its surrounding tissues: mechanistic insights into medication-related osteonecrosis of the jaw. Arch Toxicol 96(5):1227–1255. https://doi.org/10.1007/s00204-021-03220-y

    Article  CAS  PubMed  Google Scholar 

  93. Barros Silva PG et al (2016) Immune cellular profile of bisphosphonate-related osteonecrosis of the jaw. Oral Dis 22(7):649–657. https://doi.org/10.1111/odi.12513

    Article  PubMed  Google Scholar 

  94. Kuiper JWP, Forster C, Sun C, Peel S, Glogauer M (2012) Zoledronate and pamidronate depress neutrophil functions and survival in mice. Br J Pharmacol 165(2):532–539. https://doi.org/10.1111/j.1476-5381.2011.01592.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jie Z et al (2018) NIK signaling axis regulates dendritic cell function in intestinal immunity and homeostasis. Nat Immunol 19(11):1224–1235. https://doi.org/10.1038/s41590-018-0206-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Elsayed R et al (2020) FASEB J 34(2):2595–2608. https://doi.org/10.1096/fj.201901819RR

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  97. Li M, Wang J, Yu Y, Zhou Y, Shi Y, Zhang W, Son G, Ge J, Zhao J, Yang C, Wang S (2022) Characterization of mesenchymal stem cells derived from bisphosphonate-related osteonecrosis of the Jaw patients’ Gingiva. Stem Cell Rev Rep 18(1):378–394. https://doi.org/10.1007/s12015-021-10241-8

    Article  CAS  PubMed  Google Scholar 

  98. Zhao N, Li QX, Wang YF, Qiao Q, Huang HY, Guo CB, Guo YX (2023) Anti-angiogenic drug aggravates the degree of anti-resorptive drug-based medication-related osteonecrosis of the jaw by impairing the proliferation and migration function of gingival fibroblasts. BMC Oral Health 23(1):330. https://doi.org/10.1186/s12903-023-03034-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pabst AM, Ziebart T, Koch FP, Taylor KY, Al-Nawas B, Walter C (2012) The influence of bisphosphonates on viability, migration, and apoptosis of human oral keratinocytes-in vitro study. Clin Oral Investig 16(1):87–93. https://doi.org/10.1007/s00784-010-0507-6

    Article  PubMed  Google Scholar 

  100. Mohd Yunus SS, Soh HY, Abdul Rahman M, Peng X, Guo C, Ramli R (2023) MicroRNA in medication related osteonecrosis of the jaw: a review. Front Physiol 14. https://doi.org/10.3389/fphys.2023.1021429

  101. Bullock G, Miller CA, Mckechnie A, Hearnden V (2022) A review into the effects of Pamidronic Acid and Zoledronic Acid on the oral mucosa in medication-related osteonecrosis of the Jaw mechanism of action. Front Oral Health 2:1–13. https://doi.org/10.3389/froh.2021.822411

    Article  Google Scholar 

  102. Twiss IM, Pas O, Ramp-Koopmanschap W, Den Hartigh J, Vermeij P (1999) The effects of nitrogen-containing bisphosphonates on human epithelial (Caco-2) cells, an in vitro model for intestinal epithelium. J Bone Miner Res 14(5):784–791

    Article  CAS  PubMed  Google Scholar 

  103. Suri S, Mönkkönen J, Taskinen M, Pesonen J, Blank MA, Phipps RJ, Rogers MJ (2001) Nitrogen-containing bisphosphonates induce apoptosis of Caco-2 cells in vitro by inhibiting the mevalonate pathway: a model of bisphosphonate-induced gastrointestinal toxicity. Bone 29(4):336–343. https://doi.org/10.1016/s8756-3282(01)00589-0

    Article  CAS  PubMed  Google Scholar 

  104. Wehrhan F, Hyckel P, Guentsch A, Nkenke E, Stockmann P, Schlegel KA, Neukam FW, Amann K (2011) Bisphosphonate-associated osteonecrosis of the jaw is linked to suppressed TGFβ1-signaling and increased Galectin-3 expression: a histological study on biopsies. J Transl Med 9:102. https://doi.org/10.1186/1479-5876-9-102

    Article  PubMed  PubMed Central  Google Scholar 

  105. Guirguis RH, Tan LP, Hicks RM (2023) In Vitro cytotoxicity of Antiresorptive and Antiangiogenic compounds on oral tissues contributing to MRONJ. Syst Rev Biomolecules 13(6):973. https://doi.org/10.3390/biom13060973

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conceptualization and methodology. Material preparation and writing - original draft were performed by G.B.M.M. and R.M.M. Writing - review & editing, supervision and project administration were performed by K.L.F. and C.C.D. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gabriel Bassan Marinho Maciel.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors state no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassan Marinho Maciel, G., Marinho Maciel, R., Linhares Ferrazzo, K. et al. Etiopathogenesis of medication-related osteonecrosis of the jaws: a review. J Mol Med 102, 353–364 (2024). https://doi.org/10.1007/s00109-024-02425-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-024-02425-9

Keywords

Navigation