Skip to main content

Advertisement

Log in

Zoledronate but not denosumab suppresses macrophagic differentiation of THP-1 cells. An aetiologic model of bisphosphonate-related osteonecrosis of the jaw (BRONJ)

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Bisphosphonates and denosumab are antiresorptive drugs used for the treatment of osteoporosis and oncological tumors. A severe side effect is osteonecrosis of the jaw. Monocyte/macrophage dysfunction is considered to play a distinct role in osteonecrosis. THP-1 monocytic cells were used in this study to elucidate the influence of zoledronate and denosumab on phorbol-12-myrisate-13-acetate (PMA)-induced macrophage differentiation and function in real-time.

Materials and methods

Macrophagic differentiation of the THP-1 suspension cells was measured by cell adherence in the presence or absence of different concentrations of zoledronate (0.5, 5, 50 μM) and denosumab (1, 10, 20, 40 μg/mL) using the real-time xCELLigence system. Additionally, a live/dead staining was performed by fluorescence microscopy.

Results

THP-1 cells demonstrated a regular initial PMA-induced differentiation to macrophages by live measurements of cell adherence and by an increase in CD68 surface expression as detected by flow cytometry. The addition of zoledronate led to cell detachment of the THP-1-derived macrophages in a dose-dependent manner in contrast to denosumab. Cell detachment was based on cell death as confirmed by live/dead staining, revealing elevated numbers of dead cells following addition of high zoledronate concentrations. However, denosumab did not deteriorate THP-1 cell viability.

Conclusion

Our results demonstrate that zoledronate but not denosumab suppresses monocytic THP-1 cell viability after macrophagic differentiation dose-dependently.

Clinical relevance

This is the first real-time study providing evidence for a dose-dependent immunosuppressive effect of zoledronate in contrast to denosumab on local macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baron R, Ferrari S, Russell RG (2011) Denosumab and bisphosphonates: different mechanisms of action and effects. Bone 48:677–692

    Article  PubMed  Google Scholar 

  2. Hoefert S, Eufinger H (2005) Osteonecrosis of the jaws as a possible adverse effect of the use of bisphosphonates. Mund Kiefer Gesichtschir 9:233–238

    Article  PubMed  Google Scholar 

  3. Moreau MF, Guillet C, Massin P, Chevalier S, Gascan H, Basle MF et al (2007) Comparative effects of five bisphosphonates on apoptosis of macrophage cells in vitro. Biochem Pharmacol 73:718–723

    Article  PubMed  Google Scholar 

  4. Russell RG (2011) Bisphosphonates: the first 40 years. Bone 49:2–19

    Article  PubMed  Google Scholar 

  5. Lipton A, Fizazi K, Stopeck AT, Henry DH, Brown JE, Yardley DA et al (2012) Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomised, phase 3 trials. Eur J Cancer 48:3082–3092

    Article  PubMed  Google Scholar 

  6. Lacey DL, Boyle WJ, Simonet WS, Kostenuik PJ, Dougall WC, Sullivan JK et al (2012) Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat Rev Drug Discov 11:401–419

    Article  PubMed  Google Scholar 

  7. Stopeck AT, Lipton A, Body JJ, Steger GG, Tonkin K, de Boer RH et al (2010) Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol 28:5132–5139

    Article  PubMed  Google Scholar 

  8. Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J et al (2011) Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 29:1125–1132

    Article  PubMed  Google Scholar 

  9. Fizazi K, Carducci M, Smith M, Damiao R, Brown J, Karsh L et al (2011) Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377:813–822

    Article  PubMed Central  PubMed  Google Scholar 

  10. Ruggiero SL, Dodson TB, Assael LA, Landesberg R, Marx RE, Mehrotra B (2009) American association of oral and maxillofacial surgeons position paper on bisphosphonate-related osteonecrosis of the jaws–2009 update. J Oral Maxillofac Surg 67(5):2–12

    Article  PubMed  Google Scholar 

  11. Saad F, Brown JE, Van PC, Ibrahim T, Stemmer SM, Stopeck AT et al (2012) Incidence, risk factors, and outcomes of osteonecrosis of the jaw: integrated analysis from three blinded active-controlled phase III trials in cancer patients with bone metastases. Ann Oncol 23:1341–1347

    Article  PubMed  Google Scholar 

  12. Hewitt RE, Lissina A, Green AE, Slay ES, Price DA, Sewell AK (2005) The bisphosphonate acute phase response: rapid and copious production of proinflammatory cytokines by peripheral blood gd T cells in response to aminobisphosphonates is inhibited by statins. Clin Exp Immunol 139:101–111

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ferrari-Lacraz S, Ferrari S (2011) Do RANKL inhibitors (denosumab) affect inflammation and immunity? Osteoporos Int 22:435–446

    Article  PubMed  Google Scholar 

  14. Marx RE (2003) Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg 61:1115–1117

    Article  PubMed  Google Scholar 

  15. Diz P, Lopez-Cedrun JL, Arenaz J, Scully C (2012) Denosumab-related osteonecrosis of the jaw. J Am Dent Assoc 143:981–984

    Article  PubMed  Google Scholar 

  16. Ruggiero SL (2013) An office-based approach to the diagnosis and management of osteonecrosis. Atlas Oral Maxillofac Surg Clin North Am 21:167–173

    Article  PubMed  Google Scholar 

  17. Carmagnola D, Canciani E, Sozzi D, Biglioli F, Moneghini L, Dellavia C (2013) Histological findings on jaw osteonecrosis associated with bisphosphonates (BONJ) or with radiotherapy (ORN) in humans. Acta Odontol Scand 71:1410–1417

    Article  PubMed  Google Scholar 

  18. Favia G, Pilolli GP, Maiorano E (2009) Histologic and histomorphometric features of bisphosphonate-related osteonecrosis of the jaws: an analysis of 31 cases with confocal laser scanning microscopy. Bone 45:406–413

    Article  PubMed  Google Scholar 

  19. Kumar V, Sinha RK (2013) Evolution and etiopathogenesis of bisphosphonates induced osteonecrosis of the jaw. N Am J Med Sci 5:260–265

    Article  PubMed Central  PubMed  Google Scholar 

  20. Jones AC, Sedghizadeh PP (2014) Bisphosphonate-related osteonecrosis of the jaws is caused by dental procedures that violate oral epithelium; this is no longer a mysterious disease. Oral Surg Oral Med Oral Pathol Oral Radiol 117:392–393

    Article  PubMed  Google Scholar 

  21. Kunzmann V, Bauer E, Wilhelm M (1999) Gamma/delta T-cell stimulation by pamidronate. N Engl J Med 340:737–738

    Article  PubMed  Google Scholar 

  22. Bekker PJ, Holloway DL, Rasmussen AS, Murphy R, Martin SW, Leese PT et al (2005) A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. 2004. J Bone Miner Res 20:2275–2282

    Article  PubMed  Google Scholar 

  23. Burr DB, Allen MR (2009) Mandibular necrosis in beagle dogs treated with bisphosphonates. Orthod Craniofac Res 12:221–228

    Article  PubMed Central  PubMed  Google Scholar 

  24. Walter C, Al-Nawas B, Frickhofen N, Gamm H, Beck J, Reinsch L et al (2010) Prevalence of bisphosphonate associated osteonecrosis of the jaws in multiple myeloma patients. Head Face Med 6:11. doi:10.1186/1746-160X-6-11

    Article  PubMed Central  PubMed  Google Scholar 

  25. Yoneda T, Hagino H, Sugimoto T, Ohta H, Takahashi S, Soen S et al (2010) Bisphosphonate-related osteonecrosis of the jaw: position paper from the allied task force committee of Japanese society for bone and mineral research, Japan osteoporosis society, Japanese society of periodontology, Japanese society for oral and maxillofacial radiology, and Japanese society of oral and maxillofacial surgeons. J Bone Miner Metab 28:365–383

    Article  PubMed  Google Scholar 

  26. Qi WX, Tang LN, He AN, Yao Y, Shen Z (2014) Risk of osteonecrosis of the jaw in cancer patients receiving denosumab: a meta-analysis of seven randomized controlled trials. Int J Clin Oncol 19:403–410

    Article  PubMed  Google Scholar 

  27. Pazianas M (2011) Osteonecrosis of the jaw and the role of macrophages. J Natl Cancer Inst 103:232–240

    Article  PubMed  Google Scholar 

  28. Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K (1980) Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer 26:171–176

    Article  PubMed  Google Scholar 

  29. Daigneault M, Preston JA, Marriott HM, Whyte MK, Dockrell DH (2010) The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE 1:e8668

    Article  Google Scholar 

  30. Plattner VE, Ratzinger G, Engleder ET, Gallauner S, Gabor F, Wirth M (2009) Alteration of the glycosylation pattern of monocytic THP-1 cells upon differentiation and its impact on lectin-mediated drug delivery. Eur J Pharm Biopharm 73:324–330

    Article  PubMed  Google Scholar 

  31. Urcan E, Haertel U, Styllou M, Hickel R, Scherthan H, Reichl FX (2010) Real-time xCELLigence impedance analysis of the cytotoxicity of dental composite components on human gingival fibroblasts. Dent Mater 26:51–58

    Article  PubMed  Google Scholar 

  32. Block GA, Bone HG, Fang L, Lee E, Padhi D (2012) A single-dose study of denosumab in patients with various degrees of renal impairment. J Bone Miner Res 27:1471–1479

    Article  PubMed Central  PubMed  Google Scholar 

  33. Hoefert S, Schmitz I, Weichert F, Gaspar M, Eufinger H (2014) Macrophages and bisphosphonate-related osteonecrosis of the jaw (BRONJ): evidence of local immunosuppression of macrophages in contrast to other infectious jaw diseases. Clin Oral Investig. doi:10.1007/s00784-014-1273-7

    Google Scholar 

  34. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661

    Article  PubMed Central  PubMed  Google Scholar 

  35. Jeganathan S, Fiorino C, Naik U, Sun HS, Harrison RE (2014) Modulation of osteoclastogenesis with macrophage M1- and M2-inducing stimuli. PLoS ONE 8:e104498. doi: 10.1371

  36. Roelofs AJ, Stewart CA, Sun S, Blazewska KM, Kashemirov BA, McKenna CE et al (2012) Influence of bone affinity on the skeletal distribution of fluorescently labeled bisphosphonates in vivo. J Bone Miner Res 27:835–847

    Article  PubMed  Google Scholar 

  37. Rogers MJ, Chilton KM, Coxon FP, Lawry J, Smith MO, Suri S et al (1996) Bisphosphonates induce apoptosis in mouse macrophage-like cells in vitro by a nitric oxide-independent mechanism. J Bone Miner Res 11:1482–1491

    Article  PubMed  Google Scholar 

  38. Kuiper JW, Forster C, Sun C, Peel S, Glogauer M (2012) Zoledronate and pamidronate depress neutrophil functions and survival in mice. Br J Pharmacol 165:532–539

    Article  PubMed Central  PubMed  Google Scholar 

  39. Hagelauer N, Pabst AM, Ziebart T, Ulbrich H, Walter C (2014) In vitro effects of bisphosphonates on chemotaxis, phagocytosis, and oxidative burst of neutrophil granulocytes. Clin Oral Investig. doi:10.1007/s00784-014-1219-0

    Google Scholar 

  40. Orsini G, Failli A, Legitimo A, Adinolfi B, Romanini A, Consolini R (2011) Zoledronic acid modulates maturation of human monocyte-derived dendritic cells. Exp Biol Med (Maywood) 236:1420–1426

    Article  Google Scholar 

  41. Cheng ML, Fong L (2014) Effects of RANKL-Targeted Therapy in Immunity and Cancer. Front Oncol 329. doi: 10.3389/fonc.2013.00329

  42. Seshasayee D, Wang H, Lee WP, Gribling P, Ross J, van BN et al (2004) A novel in vivo role for osteoprotegerin ligand in activation of monocyte effector function and inflammatory response. J Biol Chem 279:30202–30209

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the German Society of Dentistry and Oral Medicine (Deutsche Gesellschaft für Zahn-, Mund- und Kieferheilkunde e.V.; DGZMK).

Conflicts of interest

We authors declare no other financial relationships with the organisation that sponsored the research, other organisations, nor other conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Hoefert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoefert, S., Hoefert, C.S., Albert, M. et al. Zoledronate but not denosumab suppresses macrophagic differentiation of THP-1 cells. An aetiologic model of bisphosphonate-related osteonecrosis of the jaw (BRONJ). Clin Oral Invest 19, 1307–1318 (2015). https://doi.org/10.1007/s00784-014-1358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-014-1358-3

Keywords

Navigation