Skip to main content

Advertisement

Log in

The important roles of microRNAs in depression: new research progress and future prospects

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are non-encoding, single-stranded RNA molecules of about 22 nucleotides in length encoded by endogenous genes involved in posttranscriptional gene expression regulation. Studies have shown that miRNAs participate in a series of important pathophysiological processes, including the pathogenesis of depression. This article systematically summarized the research results published in the field of miRNAs and depression, which mainly involved three topics: circulating miRNAs as markers for diagnosis and prognosis of depression, the regulatory roles of miRNAs in the pathogenesis of depression, and the roles of miRNAs in the mechanisms of depression treatment. By summarizing and analyzing the research literature in recent years, we found that some circulating miRNAs can be potential biomarkers for the diagnosis and prognostic evaluation of depression. miRNAs that disorderly expressed during the disease play important roles in the depression pathogenesis, and miRNAs also play roles in the mechanisms of psychotherapy and drug therapy for depression. Elucidating the important roles of miRNAs in depression will bring people’s understanding of the pathogenesis of depression to a new level. In addition, these miRNAs may be developed as new biomarkers for diagnosing depression, or as drug targets, or these molecules may be used as new drugs, which may provide new means for the treatment of depression.

Key messages

• The research results of miRNAs and depression are reviewed.

• Circulating miRNAs can be potential biomarkers for depression.

• MiRNAs play important roles in the depression pathogenesis.

• MiRNAs play important roles in drug therapy for depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

miRNA:

MicroRNA

CUMS:

Chronic unpredictable mild stress

MDD:

Major depression disorder

PBMCs:

Peripheral blood mononuclear cells

PSD:

Poststroke depression

CNS:

Central nervous system

GR:

Glucocorticoid receptor

BDNF:

Brain-derived neurotrophic factor

CMS:

Chronic mild stress

VLO:

Ventrolateral orbital cortex

DUSP1:

Dual-specificity phosphatase 1

HPA:

Hypothalamic-pituitary-adrenal

Ucn1:

Urocortin 1

CREB:

cAMP response element–binding protein

NMDA:

N-Methyl-d-aspartate

NMDAR-LTD:

NMDA receptor–dependent long-term depression

HDAC4:

Histone deacetylase 4

Sgk1:

Serum- and glucocorticoid-inducible protein kinase-1

PFC:

Prefrontal cortex

RISC:

RNA-induced silencing complex

Ago2:

Argounaute-2

GRM4:

Glutamate receptor metabolic type 4

DDIT4:

DNA damage-inducible transcript 4

SP1:

Specificity protein 1

SERT:

Serotonin transporter

CSF:

Cerebrospinal fluid

SSRI:

Selective serotonin reuptake inhibitor

CSDS:

Chronic social defeat stress

STXBP3A:

Syntaxin-binding protein 3

VAMP1:

Vesicle-associated protein 1

SSd:

Saikosaponin d

BMSCs:

Bone marrow mesenchymal stem cells

FKBP51:

FK506-binding protein 51

CAD:

Coronary artery disease

NOS1:

Neuronal nitric oxide synthase 1

D3R:

Dopamine D3 receptor

DZ:

Dingzhi Xiaowan

CANTAB:

Cambridge Neuropsychological Test Automated Battery

PRM:

Pattern recognition memory

DG:

Dentate gyrus

References

  1. Zhu B, Ju S, Chu H, Shen X, Zhang Y, Luo X, Cong H (2018) The potential function of microRNAs as biomarkers and therapeutic targets in multiple myeloma. Oncol Lett 15:6094–6106

    PubMed  PubMed Central  Google Scholar 

  2. Lu J, Zhan Y, Feng J, Luo J, Fan S (2018) MicroRNAs associated with therapy of non-small cell lung cancer. Int J Biol Sci 14:390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Donlic A, Hargrove AE (2018) Targeting RNA in mammalian systems with small molecules. Wiley Interdiscip Rev RNA 9:e1477

    Article  PubMed  PubMed Central  Google Scholar 

  4. Majidinia M, Darband SG, Kaviani M, Nabavi SM, Jahanban-Esfahlan R, Yousefi B (2018) Cross-regulation between Notch signaling pathway and miRNA machinery in cancer. DNA Repair (Amst) 66-67:30–41

    Article  CAS  Google Scholar 

  5. Raglan GB, Schulkin J, Micks E (2020) Depression during perimenopause: the role of the obstetrician-gynecologist. Arch Womens Ment Health 23:1–10

    Article  PubMed  Google Scholar 

  6. Taylor AM, Holscher HD (2020) A review of dietary and microbial connections to depression, anxiety, and stress. Nutr Neurosci 23:237–250

    Article  CAS  PubMed  Google Scholar 

  7. Knight MJ, Baune BT (2018) Cognitive dysfunction in major depressive disorder. Curr Opin Psychiatry 31:26–31

    Article  PubMed  Google Scholar 

  8. Rosenblat JD, Lee Y, McIntyre RS (2017) Does Pharmacogenomic testing improve clinical outcomes for major depressive disorder? A systematic review of clinical trials and cost-effectiveness studies. J Clin Psychiatry 78:720–729

    Article  PubMed  Google Scholar 

  9. Maul S, Giegling I, Fabbri C, Corponi F, Serretti A, Rujescu D (2020) Genetics of resilience: implications from genome-wide association studies and candidate genes of the stress response system in posttraumatic stress disorder and depression. Am J Med Genet B Neuropsychiatr Genet 183:77–94

    Article  CAS  PubMed  Google Scholar 

  10. Bennabi D, Haffen E (2018) Transcranial direct current stimulation (tDCS): a promising treatment for major depressive disorder? Brain Sci 8:81–87

    Article  PubMed Central  Google Scholar 

  11. Dwivedi Y (2017) MicroRNA-124: a putative therapeutic target and biomarker for major depression. Expert Opin Ther Targets 21:653–656

    Article  CAS  PubMed  Google Scholar 

  12. Lopez JP, Pereira F, Richard-Devantoy S, Berlim M, Chachamovich E, Fiori LM, Niola P, Turecki G, Jollant F (2017) Co-variation of peripheral levels of miR-1202 and brain activity and connectivity during antidepressant treatment. Neuropsychopharmacology 42:2043–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lopez JP, Lim R, Cruceanu C, Crapper L, Fasano C, Labonte B, Maussion G, Yang JP, Yerko V, Vigneault E et al (2014) miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment. Nat Med 20:764–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roy B, Yoshino Y, Allen L, Prall K, Schell G, Dwivedi Y (2020) Exploiting circulating microRNAs as biomarkers in psychiatric disorders. Mol Diagn Ther 24:279–298

    Article  CAS  PubMed  Google Scholar 

  15. Yoshino Y, Roy B, Dwivedi Y (2020) Altered miRNA landscape of the anterior cingulate cortex is associated with potential loss of key neuronal functions in depressed brain. Eur Neuropsychopharmacol 40:70–84

    Article  CAS  PubMed  Google Scholar 

  16. Yan X, Zeng D, Zhu H, Zhang Y, Shi Y, Wu Y, Tang H, Li D (2020) MiRNA-532-5p regulates CUMS-induced depression-like behaviors and modulates LPS-induced proinflammatory cytokine signaling by targeting STAT3. Neuropsychiatr Dis Treat 16:2753–2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Enatescu VR, Papava I, Enatescu I, Antonescu M, Anghel A, Seclaman E, Sirbu IO, Marian C (2016) Circulating plasma micro RNAs in patients with major depressive disorder treated with antidepressants: a pilot study. Psychiatry Investig 13:549–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuan H, Mischoulon D, Fava M, Otto MW (2018) Circulating microRNAs as biomarkers for depression: many candidates, few finalists. J Affect Disord 233:68–78

    Article  CAS  PubMed  Google Scholar 

  19. Wang X, Sundquist K, Hedelius A, Palmér K, Memon AA, Sundquist J (2015) Circulating microRNA-144-5p is associated with depressive disorders. Clin Epigenetics 7:69

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gheysarzadeh A, Sadeghifard N, Afraidooni L, Pooyan F, Mofid MR, Valadbeigi H, Bakhtiari H, Keikhavani S (2018) Serum-based microRNA biomarkers for major depression: MiR-16, miR-135a, and miR-1202. J Res Med Sci 23:69

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sun N, Lei L, Wang Y, Yang C, Liu Z, Li X, Zhang K (2016) Preliminary comparison of plasma notch-associated microRNA-34b and -34c levels in drug naive, first episode depressed patients and healthy controls. J Affect Disord 194:109–114

    Article  CAS  PubMed  Google Scholar 

  22. Sun N, Yang C, He X, Liu Z, Liu S, Li X, Wang Y, Jin R, Zhang K (2020) Impact of expression and genetic variation of microRNA-34b/c on cognitive dysfunction in patients with major depressive disorder. Neuropsychiatr Dis Treat 16:1543–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prabu P, Poongothai S, Shanthirani CS, Anjana RM, Mohan V, Balasubramanyam M (2020) Altered circulatory levels of miR-128, BDNF, cortisol and shortened telomeres in patients with type 2 diabetes and depression. Acta Diabetol 57:799–807

    Article  CAS  PubMed  Google Scholar 

  24. Feng J, Wang M, Li M, Yang J, Jia J, Liu L, Zhou J, Zhang C, Wang X (2019) Serum miR-221-3p as a new potential biomarker for depressed mood in perioperative patients. Brain Res 1720:146296

    Article  CAS  PubMed  Google Scholar 

  25. Lian N, Niu Q, Lei Y, Li X, Li Y, Song X (2018) MiR-221 is involved in depression by regulating Wnt2/CREB/BDNF axis in hippocampal neurons. Cell Cycle 17:2745–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gururajan A, Naughton ME, Scott KA, O'Connor RM, Moloney G, Clarke G, Dowling J, Walsh A, Ismail F, Shorten G et al (2016) MicroRNAs as biomarkers for major depression: a role for let-7b and let-7c. Transl Psychiatry 6:e862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He S, Liu X, Jiang K, Peng D, Hong W, Fang Y, Qian Y, Yu S, Li H (2016) Alterations of microRNA-124 expression in peripheral blood mononuclear cells in pre- and post-treatment patients with major depressive disorder. J Psychiatr Res 78:65–71

    Article  PubMed  Google Scholar 

  28. Kolshus E, Ryan KM, Blackshields G, Smyth P, Sheils O, McLoughlin DM (2017) Peripheral blood microRNA and VEGFA mRNA changes following electroconvulsive therapy: implications for psychotic depression. Acta Psychiatr Scand 136:594–606

    Article  CAS  PubMed  Google Scholar 

  29. Maffioletti E, Cattaneo A, Rosso G, Maina G, Maj C, Gennarelli M, Tardito D, Bocchio-Chiavetto L (2016) Peripheral whole blood microRNA alterations in major depression and bipolar disorder. J Affect Disord 200:250–258

    Article  CAS  PubMed  Google Scholar 

  30. Wang SS, Mu RH, Li CF, Dong SQ, Geng D, Liu Q, Yi LT (2017) MicroRNA-124 targets glucocorticoid receptor and is involved in depression-like behaviors. Prog Neuropsychopharmacol Biol Psychiatry 79:417–425

    Article  CAS  PubMed  Google Scholar 

  31. Bahi A (2017) Hippocampal BDNF overexpression or microR124a silencing reduces anxiety- and autism-like behaviors in rats. Behav Brain Res 326:281–290

    Article  CAS  PubMed  Google Scholar 

  32. Li D, Wang Y, Jin X, Hu D, Xia C, Xu H, Hu J (2020) NK cell-derived exosomes carry miR-207 and alleviate depression-like symptoms in mice. J Neuroinflammation 17:126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao Y, Wang S, Chu Z, Dang Y, Zhu J, Su X (2017) MicroRNA-101 in the ventrolateral orbital cortex (VLO) modulates depressive-like behaviors in rats and targets dual-specificity phosphatase 1 (DUSP1). Brain Res 1669:55–62

    Article  CAS  PubMed  Google Scholar 

  34. Zurawek D, Kusmider M, Faron-Gorecka A, Gruca P, Pabian P, Kolasa M, Solich J, Szafran-Pilch K, Papp M, Dziedzicka-Wasylewska M (2016) Time-dependent miR-16 serum fluctuations together with reciprocal changes in the expression level of miR-16 in mesocortical circuit contribute to stress resilient phenotype in chronic mild stress - an animal model of depression. Eur Neuropsychopharmacol 26:23–36

    Article  CAS  PubMed  Google Scholar 

  35. Song MF, Dong JZ, Wang YW, He J, Ju X, Zhang L, Zhang YH, Shi JF, Lv YY (2015) CSF miR-16 is decreased in major depression patients and its neutralization in rats induces depression-like behaviors via a serotonin transmitter system. J Affect Disord 178:25–31

    Article  CAS  PubMed  Google Scholar 

  36. Shao QY, You F, Zhang YH, Hu LL, Liu WJ, Liu Y, Li J, Wang SD, Song MF (2018) CSF miR-16 expression and its association with miR-16 and serotonin transporter in the raphe of a rat model of depression. J Affect Disord 238:609–614

    Article  CAS  PubMed  Google Scholar 

  37. Lo Iacono L, Ielpo D, Accoto A, Di Segni M, Babicola L, D'Addario SL, Ferlazzo F, Pascucci T, Ventura R, Andolina D (2020) MicroRNA-34a regulates the depression-like behavior in mice by modulating the expression of target genes in the dorsal raphè. Mol Neurobiol 57:823–836

    Article  CAS  PubMed  Google Scholar 

  38. Xie L, Chen J, Ding YM, Gui XW, Wu LX, Tian S, Wu W (2019) MicroRNA-26a-2 maintains stress resiliency and antidepressant efficacy by targeting the serotonergic autoreceptor HTR1A. Biochem Biophys Res Commun 511:440–446

    Article  CAS  PubMed  Google Scholar 

  39. Guo L, Zhu Z, Wang G, Cui S, Shen M, Song Z, Wang JH (2020) microRNA-15b contributes to depression-like behavior in mice by affecting synaptic protein levels and function in the nucleus accumbens. J Biol Chem 295:6831–6848

    Article  CAS  PubMed  Google Scholar 

  40. Deng ZF, Zheng HL, Chen JG, Luo Y, Xu JF, Zhao G, Lu JJ, Li HH, Gao SQ, Zhang DZ et al (2019) miR-214-3p targets β-catenin to regulate depressive-like behaviors induced by chronic social defeat stress in mice. Cereb Cortex 29:1509–1519

    Article  PubMed  Google Scholar 

  41. Wei YB, Melas PA, Villaescusa JC, Liu JJ, Xu N, Christiansen SH, Elbrønd-Bek H, Woldbye DP, Wegener G, Mathé AA et al (2016) MicroRNA 101b is downregulated in the prefrontal cortex of a genetic model of depression and targets the glutamate transporter SLC1A1 (EAAT3) in vitro. Int J Neuropsychopharmacol 19:pyw069

    Article  PubMed  PubMed Central  Google Scholar 

  42. Aschrafi A, Verheijen JM, Gordebeke PM, Olde Loohuis NF, Menting K, Jager A, Palkovits M, Geenen B, Kos A, Martens GJ et al (2016) MicroRNA-326 acts as a molecular switch in the regulation of midbrain urocortin 1 expression. J Psychiatry Neurosci 41:342–353

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang M, Guo J, Dong LN, Wang JP (2019) Cerebellar fastigial nucleus stimulation in a chronic unpredictable mild stress rat model reduces post-stroke depression by suppressing brain inflammation via the microRNA-29c/TNFRSF1A signaling pathway. Med Sci Monit 25:5594–5605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao L, Li H, Guo R, Ma T, Hou R, Ma X, Du Y (2013) miR-137, a new target for post-stroke depression? Neural Regen Res 8:2441–2448

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Liang HB, He JR, Tu XQ, Ding KQ, Yang GY, Zhang Y, Zeng LL (2019) MicroRNA-140-5p: a novel circulating biomarker for early warning of late-onset post-stroke depression. J Psychiatr Res 115:129–141

    Article  PubMed  Google Scholar 

  46. Dhar M, Zhu M, Impey S, Lambert TJ, Bland T, Karatsoreos IN, Nakazawa T, Appleyard SM, Wayman GA (2014) Leptin induces hippocampal synaptogenesis via CREB-regulated microRNA-132 suppression of p250GAP. Mol Endocrinol 28:1073–1087

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fiore R, Rajman M, Schwale C, Bicker S, Antoniou A, Bruehl C, Draguhn A, Schratt G (2014) MiR-134-dependent regulation of Pumilio-2 is necessary for homeostatic synaptic depression. EMBO J 33:2231–2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tang CZ, Yang JT, Liu QH, Wang YR, Wang WS (2019) Up-regulated miR-192-5p expression rescues cognitive impairment and restores neural function in mice with depression via the Fbln2-mediated TGF-β1 signaling pathway. FASEB J 33:606–618

    Article  CAS  PubMed  Google Scholar 

  49. Tang CZ, Zhang DF, Yang JT, Liu QH, Wang YR, Wang WS (2019) Overexpression of microRNA-301b accelerates hippocampal microglia activation and cognitive impairment in mice with depressive-like behavior through the NF-κB signaling pathway. Cell Death Dis 10:316

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lou D, Wang J, Wang X (2019) miR-124 ameliorates depressive-like behavior by targeting STAT3 to regulate microglial activation. Mol Cell Probes 48:101470

    Article  CAS  PubMed  Google Scholar 

  51. Higuchi F, Uchida S, Yamagata H, Abe-Higuchi N, Hobara T, Hara K, Kobayashi A, Shintaku T, Itoh Y, Suzuki T et al (2016) Hippocampal microRNA-124 enhances chronic stress resilience in mice. J Neurosci 36:7253–7267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang W, Liu M, Zhang Q, Zhang J, Chen J, Suo L, Chen Q (2020) Knockdown of miR-124 reduces depression-like behavior in rats by targeting CREB1 and BDNF. Curr Neurovasc Res. 17:196–203

    Article  CAS  PubMed  Google Scholar 

  53. Guo H, Huang B, Wang Y, Zhang Y, Ma Q, Ren Y (2020) Bone marrow mesenchymal stem cells-derived exosomes improve injury of hippocampal neurons in rats with depression by upregulating microRNA-26a expression. Int Immunopharmacol. 82:106285

    Article  CAS  PubMed  Google Scholar 

  54. Cui J, Gong C, Cao B, Li L (2018) MicroRNA-27a participates in the pathological process of depression in rats by regulating VEGFA. Exp Ther Med 15:4349–4355

    PubMed  PubMed Central  Google Scholar 

  55. Su M, Hong J, Zhao Y, Liu S, Xue X (2015) MeCP2 controls hippocampal brain-derived neurotrophic factor expression via homeostatic interactions with microRNA-132 in rats with depression. Mol Med Rep 12:5399–5406

    Article  CAS  PubMed  Google Scholar 

  56. Pei G, Xu L, Huang W, Yin J (2020) The protective role of microRNA-133b in restricting hippocampal neurons apoptosis and inflammatory injury in rats with depression by suppressing CTGF. Int Immunopharmacol. 78:106076

    Article  CAS  PubMed  Google Scholar 

  57. Li C, Wang F, Miao P, Yan L, Liu S, Wang X, Jin Z, Gu Z (2020) miR-138 increases depressive-like behaviors by targeting SIRT1 in hippocampus. Neuropsychiatr Dis Treat 16:949–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fonken LK, Gaudet AD, Gaier KR, Nelson RJ, Popovich PG (2016) MicroRNA-155 deletion reduces anxiety- and depressive-like behaviors in mice. Psychoneuroendocrinology 63:362–369

    Article  CAS  PubMed  Google Scholar 

  59. Li Y, Li S, Yan J, Wang D, Yin R, Zhao L, Zhu Y, Zhu X (2016) miR-182 (microRNA-182) suppression in the hippocampus evokes antidepressant-like effects in rats. Prog Neuropsychopharmacol Biol Psychiatry 65:96–103

    Article  PubMed  Google Scholar 

  60. Xin C, Xia J, Liu Y, Zhang Y (2020) MicroRNA-202-3p targets brain-derived neurotrophic factor and is involved in depression-like behaviors. Neuropsychiatr Dis Treat 16:1073–1083

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Jin J, Kim SN, Liu X, Zhang H, Zhang C, Seo JS, Kim Y, Sun T (2016) miR-17-92 cluster regulates adult hippocampal neurogenesis, anxiety, and depression. Cell Rep 16:1653–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gu Z, Pan J, Chen L (2019) MiR-124 suppression in the prefrontal cortex reduces depression-like behavior in mice. Biosci Rep 39:BSR20190186

    Article  PubMed  PubMed Central  Google Scholar 

  63. Roy B, Dunbar M, Shelton RC, Dwivedi Y (2017) Identification of microRNA-124-3p as a putative epigenetic signature of major depressive disorder. Neuropsychopharmacology 42:864–875

    Article  CAS  PubMed  Google Scholar 

  64. Torres-Berrío A, Lopez JP, Bagot RC, Nouel D, Dal Bo G, Cuesta S, Zhu L, Manitt C, Eng C, Cooper HM et al (2017) DCC confers susceptibility to depression-like behaviors in humans and mice and is regulated by miR-218. Biol Psychiatry 81:306–315

    Article  PubMed  Google Scholar 

  65. Wang Q, Zhao G, Yang Z, Liu X, Xie P (2018) Downregulation of microRNA-124-3p suppresses the mTOR signaling pathway by targeting DDIT4 in males with major depressive disorder. Int J Mol Med 41:493–500

    CAS  PubMed  Google Scholar 

  66. Yang J, Zhang L, Cao LL, Qi J, Li P, Wang XP, Sun XL (2019) MicroRNA-99a is a potential target for regulating hypothalamic synaptic plasticity in the peri/postmenopausal depression model. Cells 8:1081

    Article  CAS  PubMed Central  Google Scholar 

  67. Miao Z, Mao F, Liang J, Szyf M, Wang Y, Sun ZS (2018) Anxiety-related behaviours associated with microRNA-206-3p and BDNF expression in pregnant female mice following psychological social stress. Mol Neurobiol 55:1097–1111

    Article  CAS  PubMed  Google Scholar 

  68. Bai M, Zhu X, Zhang Y, Zhang S, Zhang L, Xue L, Yi J, Yao S, Zhang X (2012) Abnormal hippocampal BDNF and miR-16 expression is associated with depression-like behaviors induced by stress during early life. PLoS One 7:e46921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chang CH, Kuek EJW, Su CL, Gean PW (2020) MicroRNA-206 regulates stress-provoked aggressive behaviors in post-weaning social isolation mice. Mol Ther Nucleic Acids 20:812–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Miguel-Hidalgo JJ, Hall KO, Bonner H, Roller AM, Syed M, Park CJ, Ball JP, Rothenberg ME, Stockmeier CA, Romero DG (2017) MicroRNA-21: expression in oligodendrocytes and correlation with low myelin mRNAs in depression and alcoholism. Prog Neuropsychopharmacol Biol Psychiatry 79:503–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhong X, Cao W, Zhao H, Chen L, Cao J, Wei L, Tang Y, Zhong J, Xiao X, Zu X et al (2020) MicroRNA-32-5p knockout eliminates lipopolysaccharide-induced depressive-like behavior in mice through inhibition of astrocyte overactivity. Brain Behav Immun 84:10–22

    Article  CAS  PubMed  Google Scholar 

  72. Biggar KK, Storey KB (2018) Functional impact of microRNA regulation in models of extreme stress adaptation. J Mol Cell Biol 10:93–101

    Article  CAS  PubMed  Google Scholar 

  73. Liu Q, Zhou J (2019) Effect of miR-16 on behaviors of depression model mice through regulating NF-κB pathway. Minerva Endocrinol 44:397–399

    PubMed  Google Scholar 

  74. Xu J, Wang R, Liu Y, Liu D, Jiang H, Pan F (2017) FKBP5 and specific microRNAs via glucocorticoid receptor in the basolateral amygdala involved in the susceptibility to depressive disorder in early adolescent stressed rats. J Psychiatr Res 95:102–113

    Article  PubMed  Google Scholar 

  75. Buran İ, Etem EÖ, Tektemur A, Elyas H (2017) Treatment with TREK1 and TRPC3/6 ion channel inhibitors upregulates microRNA expression in a mouse model of chronic mild stress. Neurosci Lett 656:51–57

    Article  CAS  PubMed  Google Scholar 

  76. Roy B, Dunbar M, Agrawal J, Allen L, Dwivedi Y (2020) Amygdala-based altered miRNome and epigenetic contribution of miR-128-3p in conferring susceptibility to depression-like behavior via Wnt signaling. Int J Neuropsychopharmacol 23:165–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Serafini G, Trabucco A, Amerio A, Aguglia A, Amore M (2020) Commentary on the study of Roy et al. Amygdala based altered mir-128-3p in conferring susceptibility to depression-like behavior via Wnt signalling. Int J Neuropsychopharmacol 23:178–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Teo CH, Soga T, Parhar IS (2018) Brain beta-catenin signalling during stress and depression. Neurosignals 26:31–42

    Article  PubMed  Google Scholar 

  79. Ma K, Xu A, Cui S, Sun MR, Xue YC, Wang JH (2016) Impaired GABA synthesis, uptake and release are associated with depression-like behaviors induced by chronic mild stress. Transl Psychiatry 6:e910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fang K, Xu JX, Chen XX, Gao XR, Huang LL, Du AQ, Jiang C, Ge JF (2020) Differential serum exosome microRNA profile in a stress-induced depression rat model. J Affect Disord 274:144–158

    Article  CAS  PubMed  Google Scholar 

  81. Wang Q, Roy B, Turecki G, Shelton RC, Dwivedi Y (2018) Role of complex epigenetic switching in tumor necrosis factor-α upregulation in the prefrontal cortex of suicide subjects. Am J Psychiatry 175:262–274

    Article  PubMed  PubMed Central  Google Scholar 

  82. An T, Song Z, Wang JH (2020) Molecular mechanism of reward treatment ameliorating chronic stress-induced depressive-like behavior assessed by sequencing miRNA and mRNA in medial prefrontal cortex. Biochem Biophys Res Commun 528:520–527

    Article  CAS  PubMed  Google Scholar 

  83. Zhang Y, Cheng L, Chen Y, Yang GY, Liu J, Zeng L (2016) Clinical predictor and circulating microRNA profile expression in patients with early onset post-stroke depression. J Affect Disord 193:51–58

    Article  CAS  PubMed  Google Scholar 

  84. Hu J, Zhou W, Zhou Z, Yang Q, Xu J, Dong W (2020) miR-22 and cerebral microbleeds in brainstem and deep area are associated with depression one month after ischemic stroke. Braz J Med Biol Res 53:e9162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xu C, Liu X, Song X, Gao Q, Cheng L, Wang L, Zhang K, Xu Y (2016) Aberrant resting state in microRNA-30e rat model of cognitive impairment. Neuroreport 27:809–817

    Article  CAS  PubMed  Google Scholar 

  86. Qi S, Yang X, Zhao L, Calhoun VD, Perrone-Bizzozero N, Liu S, Jiang R, Jiang T, Sui J, Ma X (2018) MicroRNA132 associated multimodal neuroimaging patterns in unmedicated major depressive disorder. Brain 141:916–926

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rajgor D, Fiuza M, Parkinson GT, Hanley JG (2017) The PICK1 Ca2+ sensor modulates N-methyl-d-aspartate (NMDA) receptor-dependent microRNA-mediated translational repression in neurons. J Biol Chem 292:9774–9786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lambert TJ, Storm DR, Sullivan JM (2010) MicroRNA132 modulates short-term synaptic plasticity but not basal release probability in hippocampal neurons. PLoS One 5:e15182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Scott HL, Tamagnini F, Narduzzo KE, Howarth JL, Lee YB, Wong LF, Brown MW, Warburton EC, Bashir ZI, Uney JB (2012) MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex. Eur J Neurosci 36:2941–2948

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhang HP, Liu XL, Chen JJ, Cheng K, Bai SJ, Zheng P, Zhou CJ, Wang W, Wang HY, Zhong LM et al (2020) Circulating microRNA 134 sheds light on the diagnosis of major depressive disorder. Transl Psychiatry 10:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hu Z, Yu D, Gu QH, Yang Y, Tu K, Zhu J, Li Z (2014) miR-191 and miR-135 are required for long-lasting spine remodelling associated with synaptic long-term depression. Nat Commun 5:3263

    Article  PubMed  PubMed Central  Google Scholar 

  92. Taivalantti M, Barnett JH, Halt AH, Koskela J, Auvinen J, Timonen M, Järvelin MR, Veijola J (2020) Depressive symptoms as predictors of visual memory deficits in middle-age. J Affect Disord 264:29–34

    Article  PubMed  Google Scholar 

  93. Liu Y, Yang X, Zhao L, Zhang J, Li T, Ma X (2016) Increased miR-132 level is associated with visual memory dysfunction in patients with depression. Neuropsychiatr Dis Treat 12:2905–2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zheng Z, Zeng Y, Huang H, Xu F (2013) MicroRNA-132 may play a role in coexistence of depression and cardiovascular disease: a hypothesis. Med Sci Monit 19:438–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wei ZX, Xie GJ, Mao X, Zou XP, Liao YJ, Liu QS, Wang H, Cheng Y (2020) Exosomes from patients with major depression cause depressive-like behaviors in mice with involvement of miR-139-5p-regulated neurogenesis. Neuropsychopharmacology 45:1050–1058

    Article  CAS  PubMed  Google Scholar 

  96. Sun XH, Song MF, Song HD, Wang YW, Luo MJ, Yin LM (2019) miR-155 mediates inflammatory injury of hippocampal neuronal cells via the activation of microglia. Mol Med Rep 19:2627–2635

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wei YB, Liu JJ, Villaescusa JC, Åberg E, Brené S, Wegener G, Mathé AA, Lavebratt C (2016) Elevation of Il6 is associated with disturbed let-7 biogenesis in a genetic model of depression. Transl Psychiatry 6:e869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mendes-Silva AP, Fujimura PT, Silva JRDC, Teixeira AL, Vieira EM, Guedes PHG, Barroso LSS, Nicolau MS, Ferreira JDR, Bertola L et al (2019) Brain-enriched microrna-184 is downregulated in older adults with major depressive disorder: A translational study. J Psychiatr Res 111:110–120

    Article  PubMed  Google Scholar 

  99. Yoshino Y, Roy B, Dwivedi Y (2020) Differential and unique patterns of synaptic miRNA expression in dorsolateral prefrontal cortex of depressed subjects. Neuropsychopharmacology. https://doi.org/10.1038/s41386-020-00861-y

  100. Short AK, Fennell KA, Perreau VM, Fox A, O'Bryan MK, Kim JH, Bredy TW, Pang TY, Hannan AJ (2016) Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring. Transl Psychiatry 6:e837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Panta A, Pandey S, Duncan IN, Duhamel S, Sohrabji F (2019) Mir363-3p attenuates post-stroke depressive-like behaviors in middle-aged female rats. Brain Behav Immun 78:31–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hung YY, Wu MK, Tsai MC, Huang YL, Kang HY (2019) Aberrant expression of intracellular let-7e, miR-146a, and miR-155 correlates with severity of depression in patients with major depressive disorder and is ameliorated after antidepressant treatment. Cells 8:647

    Article  CAS  PubMed Central  Google Scholar 

  103. Weigelt K, Bergink V, Burgerhout KM, Pescatori M, Wijkhuijs A, Drexhage HA (2013) Down-regulation of inflammation-protective microRNAs 146a and 212 in monocytes of patients with postpartum psychosis. Brain Behav Immun 29:147–155

    Article  CAS  PubMed  Google Scholar 

  104. Li J, Meng H, Cao W, Qiu T (2015) MiR-335 is involved in major depression disorder and antidepressant treatment through targeting GRM4. Neurosci Lett 606:167–172

    Article  CAS  PubMed  Google Scholar 

  105. Wang X, Wang B, Zhao J, Liu C, Qu X, Li Y (2018) MiR-155 is involved in major depression disorder and antidepressant treatment via targeting SIRT1. Biosci Rep 38:BSR20181139

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wan YQ, Feng JG, Li M, Wang MZ, Liu L, Liu X, Duan XX, Zhang CX, Wang XB (2018) Prefrontal cortex miR-29b-3p plays a key role in the antidepressant-like effect of ketamine in rats. Exp Mol Med 50:1–14

    Article  CAS  PubMed  Google Scholar 

  107. Issler O, Haramati S, Paul ED, Maeno H, Navon I, Zwang R, Gil S, Mayberg HS, Dunlop BW, Menke A et al (2014) MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity. Neuron 83:344–360

    Article  CAS  PubMed  Google Scholar 

  108. Yi LT, Mu RH, Dong SQ, Wang SS, Li CF, Geng D, Liu Q (2018) miR-124 antagonizes the antidepressant-like effects of standardized gypenosides in mice. J Psychopharmacol 32:458–468

    Article  CAS  PubMed  Google Scholar 

  109. Chao B, Huang S, Pan J, Zhang Y, Wang Y (2020) Saikosaponin d downregulates microRNA-155 and upregulates FGF2 to improve depression-like behaviors in rats induced by unpredictable chronic mild stress by negatively regulating NF-κB. Brain Res Bull. 157:69–76

    Article  CAS  PubMed  Google Scholar 

  110. Shimizu S, Tanaka T, Takeda T, Tohyama M, Miyata S (2015) The Kampo medicine Yokukansan decreases microRNA-18 expression and recovers glucocorticoid receptors protein expression in the hypothalamus of stressed mice. Biomed Res Int 2015:797280

    Article  PubMed  PubMed Central  Google Scholar 

  111. Zhu WY, Feng X, Wang J, Lu YP, Dong XZ, Liu P (2018) Effect of Dingzhi Xiaowan on miR-16 expression and 5-HT reuptake. Zhongguo Zhong Yao Za Zhi 43:3513–3518

    PubMed  Google Scholar 

  112. Lopez JP, Fiori LM, Cruceanu C, Lin R, Labonte B, Cates HM, Heller EA, Vialou V, Ku SM, Gerald C et al (2017) MicroRNAs 146a/b-5 and 425-3p and 24-3p are markers of antidepressant response and regulate MAPK/Wnt-system genes. Nat Commun 8:15497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Maffioletti E, Salvi A, Conde I, Maj C, Gennarelli M, De Petro G, Bocchio-Chiavetto L (2017) Study of the in vitro modulation exerted by the antidepressant drug escitalopram on the expression of candidate microRNAs and their target genes. Mol Cell Neurosci 85:220–225

    Article  CAS  PubMed  Google Scholar 

  114. Fiori LM, Lopez JP, Richard-Devantoy S, Berlim M, Chachamovich E, Jollant F, Foster J, Rotzinger S, Kennedy SH, Turecki G (2017) Investigation of miR-1202, miR-135a, and miR-16 in major depressive disorder and antidepressant response. Int J Neuropsychopharmacol 20:619–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Miao N, Jin J, Kim SN, Sun T (2018) Hippocampal microRNAs respond to administration of antidepressant fluoxetine in adult mice. Int J Mol Sci 19:E671

    Article  PubMed  Google Scholar 

  116. Patrício P, Mateus-Pinheiro A, Alves ND, Morais M, Rodrigues AJ, Bessa JM, Sousa N, Pinto L (2020) miR-409 and miR-411 modulation in the adult brain of a rat model of depression and after fluoxetine treatment. Front Behav Neurosci 14:136

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kuang WH, Dong ZQ, Tian LT, Li J (2018) MicroRNA-451a, microRNA-34a-5p, and microRNA-221-3p as predictors of response to antidepressant treatment. Braz J Med Biol Res 51:e7212

    Article  PubMed  PubMed Central  Google Scholar 

  118. Fang Y, Qiu Q, Zhang S, Sun L, Li G, Xiao S, Li X (2018) Changes in miRNA-132 and miR-124 levels in non-treated and citalopram-treated patients with depression. J Affect Disord 227:745–751

    Article  CAS  PubMed  Google Scholar 

  119. Zastrozhin S, Petukhov P, Zastrozhina G, Ryzhikova B, Skryabin V, Bryun S (2020) The Influence of concentration of micro-RNA hsa-miR-370-3p and CYP2D6*4 on equilibrium concentration of mirtazapine in patients with major depressive disorder. Psychopharmacol Bull 50:58–75

    CAS  PubMed  Google Scholar 

  120. Bahi A, Dreyer JL (2018) Lentiviral-mediated let-7d microRNA overexpression induced anxiolytic- and anti-depressant-like behaviors and impaired dopamine D3 receptor expression. Eur Neuropsychopharmacol 28:1394–1404

    Article  CAS  PubMed  Google Scholar 

  121. Lin CC, Tsai MC, Lee CT, Sun MH, Huang TL (2018) Antidepressant treatment increased serum miR-183 and miR-212 levels in patients with major depressive disorder. Psychiatry Res 270:232–237

    Article  CAS  PubMed  Google Scholar 

  122. Oved K, Farberov L, Gilam A, Israel I, Haguel D, Gurwitz D, Shomron N (2017) MicroRNA-mediated regulation of ITGB3 and CHL1 is implicated in SSRI action. Front Mol Neurosci 10:355

    Article  PubMed  PubMed Central  Google Scholar 

  123. Fan C, Zhu X, Song Q, Wang P, Liu Z, Yu SY (2018) MiR-134 modulates chronic stress-induced structural plasticity and depression-like behaviors via downregulation of Limk1/cofilin signaling in rats. Neuropharmacology 131:364–376

    Article  CAS  PubMed  Google Scholar 

  124. Yu H, Fan C, Yang L, Yu S, Song Q, Wang P, Mao X (2018) Ginsenoside Rg1 prevents chronic stress-induced depression-like behaviors and neuronal structural plasticity in rats. Cell Physiol Biochem 48:2470–2482

    Article  CAS  PubMed  Google Scholar 

  125. Li HY, Jiang QS, Fu XY, Jiang XH, Zhou QX, Qiu HM (2017) Abnormal modification of histone acetylation involved in depression-like behaviors of rats induced by chronically unpredicted stress. Neuroreport 28:1054–1060

    Article  CAS  PubMed  Google Scholar 

  126. Leff-Gelman P, Mancilla-Herrera I, Flores-Ramos M, Cruz-Fuentes C, Reyes-Grajeda JP, García-Cuétara Mdel P, Bugnot-Pérez MD, Pulido-Ascencio DE (2016) The immune system and the role of inflammation in perinatal depression. Neurosci Bull 32:398–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tavakolizadeh J, Roshanaei K, Salmaninejad A, Yari R, Nahand JS, Sarkarizi HK, Mousavi SM, Salarinia R, Rahmati M, Mousavi SF et al (2018) MicroRNAs and exosomes in depression: potential diagnostic biomarkers. J Cell Biochem 119:3783–3797

    Article  CAS  PubMed  Google Scholar 

  128. Bhatt S, Kanoujia J, Dhar AK, Arumugam S, Silva AKA, Mishra N (2020) Exosomes: a novel therapeutic paradigm for treatment of depression. Curr Drug Targets. 22:183–191

    Google Scholar 

Download references

Funding

This project was supported by the National Science Foundation of China (No. 81302783), the Anhui Province Key Research and Development Plan (No. 1804a0802218), the Excellent talent project of Anhui Science and Technology University (No.XJYXRC201801), and the special support plan of high-level talent introduction of Anhui University of Chinese Medicine (No. 2020rcZD001).

Author information

Authors and Affiliations

Authors

Contributions

This work was completed by Pro. Dr. Chenggui Miao and Dr. Jun Chang. The first author and corresponding author Chenggui Miao is responsible for the idea of the article, literature search, data analysis, drafting, and revising the article. Dr. Jun Chang is mainly responsible for studying and summarizing which circulating miRNAs can be used as potential biomarkers for the diagnosis and prognosis evaluation of depression and assisting the first author to complete the revision of the article.

Corresponding author

Correspondence to Chenggui Miao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, C., Chang, J. The important roles of microRNAs in depression: new research progress and future prospects. J Mol Med 99, 619–636 (2021). https://doi.org/10.1007/s00109-021-02052-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02052-8

Keywords

Navigation