Skip to main content

Advertisement

Log in

Heterogeneous intracellular TRAIL-receptor distribution predicts poor outcome in breast cancer patients

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Upon ligand binding, plasma membrane–located TNF-related apoptosis-inducing ligand (TRAIL)–receptors 1 and 2 induce apoptosis as well as cancer-promoting signaling in cancer cells. TRAIL-R3 and TRAIL-R4 are believed to negatively regulate TRAIL-mediated apoptosis. Intracellular localization of TRAIL-receptors, as observed in many tumor cells, has been associated with oncogenic features, which are distinct from membrane-associated TRAIL-R signaling. Here, analyzing a panel of 354 breast cancer specimens, we found that an unfavorable outcome correlating with cancer-promoting properties of TRAIL-R1, TRAIL-R2, and TRAIL-R4 was most significantly defined by their intracellular distribution and mutual co-expression. A nuclear or cytoplasmic heterogeneous expression pattern correlated with markedly decreased overall survival and discriminated high-risk breast cancer patients from low-risk patients with a homogeneous distribution of expression, i.e., nuclear and cytoplasmic expression. The homogeneous TRAIL-R expression was associated with favorable breast cancer surrogate markers corresponding with excellent survival prognoses at 5 years after diagnosis (hazard ratio, 0.043) and over the complete course of follow-up (hazard ratio, 0.098; both p < 0.001). No associations with specific intrinsic breast cancer subtypes were found. Our data suggest that the determination of intracellular co-expression patterns of TRAIL-R1, TRAIL-R2, and TRAIL-R4 provides an innovative and robust method for risk stratification in breast cancer patients beyond conventional prognostic markers.

Key messages

  • A total of 70% of breast cancer specimens show comparably high levels of intracellular TRAIL-Rs.

  • Nuclear or cytoplasmic TRAIL-R co-expression occurs in the majority of tumors.

  • A total of 25% of tumors show a heterogeneous expression of cytoplasmic or nuclear TRAIL-Rs.

  • Patients with a heterogeneous TRAIL-R expression present with poor prognoses.

  • Additive TRAIL-R-based risk stratification comprises different breast cancer subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A et al (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N, Timour MS, Gerhart MJ, Schooley KA, Smith CA, Goodwin RG, Rauch CT (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 16:5386–5397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T et al (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157–163

    Article  CAS  PubMed  Google Scholar 

  4. Philipp S, Sosna J, Plenge J, Kalthoff H, Adam D (2015) Homoharringtonine, a clinically approved anti-leukemia drug, sensitizes tumor cells for TRAIL-induced necroptosis. Cell Commun Signal 13:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Degli-Esposti MA, Smolak PJ, Walczak H, Waugh J, Huang CP, DuBose RF, Goodwin RG, Smith CA (1997) Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 186:1165–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG (1997) The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 7:813–820

    Article  CAS  PubMed  Google Scholar 

  7. Truneh A, Sharma S, Silverman C, Khandekar S, Reddy MP, Deen KC, McLaughlin MM, Srinivasula SM, Livi GP, Marshall LA et al (2000) Temperature-sensitive differential affinity of TRAIL for its receptors. DR5 is the highest affinity receptor. J Biol Chem 275:23319–23325

    Article  CAS  PubMed  Google Scholar 

  8. Wiezorek J, Holland P, Graves J (2010) Death receptor agonists as a targeted therapy for cancer. Clin Cancer Res 16:1701–1708

    Article  CAS  PubMed  Google Scholar 

  9. Dimberg LY, Anderson CK, Camidge R, Behbakht K, Thorburn A, Ford HL (2013) On the TRAIL to successful cancer therapy? Predicting and counteracting resistance against TRAIL-based therapeutics. Oncogene 32:1341–1350

    Article  CAS  PubMed  Google Scholar 

  10. von Karstedt S, Montinaro A, Walczak H (2017) Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat Rev Cancer 17:352–366

    Article  CAS  Google Scholar 

  11. O’Reilly E, Tirincsi A, Logue SE, Szegezdi E (2016) The Janus face of death receptor signaling during tumor immunoediting. Front Immunol 7:446

    Google Scholar 

  12. Azijli K, Weyhenmeyer B, Peters GJ, de Jong S, Kruyt FA (2013) Non-canonical kinase signaling by the death ligand TRAIL in cancer cells: discord in the death receptor family. Cell Death Differ 20(7):858–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Trauzold A, Siegmund D, Schniewind B, Sipos B, Egberts J, Zorenkov D, Emme D, Röder C, Kalthoff H, Wajant H (2006) TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma. Oncogene 25:7434–7439

    Article  CAS  PubMed  Google Scholar 

  14. Hoogwater FJ, Nijkamp MW, Smakman N, Steller EJ, Emmink BL, Westendorp BF, Raats DA, Sprick MR, Schaefer U, Van Houdt WJ et al (2010) Oncogenic K-Ras turns death receptors into metastasis-promoting receptors in human and mouse colorectal cancer cells. Gastroenterology 138:2357–2367

    Article  CAS  PubMed  Google Scholar 

  15. von Karstedt S, Conti A, Nobis M, Montinaro A, Hartwig T, Lemke J, Legler K, Annewanter F, Campbell AD, Taraborrelli L, Grosse-Wilde A, Coy JF, el-Bahrawy MA, Bergmann F, Koschny R, Werner J, Ganten TM, Schweiger T, Hoetzenecker K, Kenessey I, Hegedüs B, Bergmann M, Hauser C, Egberts JH, Becker T, Röcken C, Kalthoff H, Trauzold A, Anderson KI, Sansom OJ, Walczak H (2015) Cancer cell-autonomous TRAIL-R signaling promotes KRAS-driven cancer progression, invasion, and metastasis. Cancer Cell 27:561–573

    Article  CAS  Google Scholar 

  16. Bertsch U, Röder C, Kalthoff H, Trauzold A (2014) Compartmentalization of TNF-related apoptosis-inducing ligand (TRAIL) death receptor functions: emerging role of nuclear TRAIL-R2. Cell Death Dis 5:e1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sträter J, Hinz U, Walczak H, Mechtersheimer G, Koretz K, Herfarth C, Möller P, Lehnert T (2002) Expression of TRAIL and TRAIL receptors in colon carcinoma: TRAIL-R1 is an independent prognostic parameter. Clin Cancer Res 8:3734–3740

    PubMed  Google Scholar 

  18. Kuijlen JM, Mooij JJ, Platteel I, Hoving EW, van der Graaf WT, Span MM, Hollema H, den Dunnen WF (2006) TRAIL-receptor expression is an independent prognostic factor for survival in patients with a primary glioblastoma multiforme. J Neuro-Oncol 78:161–171

    Article  CAS  Google Scholar 

  19. Dong HP, Kleinberg L, Silins I, Flørenes VA, Tropé CG, Risberg B, Nesland JM, Davidson B (2008) Death receptor expression is associated with poor response to chemotherapy and shorter survival in metastatic ovarian carcinoma. Cancer 112:84–93

    Article  PubMed  Google Scholar 

  20. Cooper WA, Kohonen-Corish MR, Zhuang L, McCaughan B, Kennedy C, Screaton G, Sutherland RL, Lee CS (2008) Role and prognostic significance of tumor necrosis factor-related apoptosis-inducing ligand death receptor DR5 in nonsmall-cell lung cancer and precursor lesions. Cancer 113:135–142

    Article  CAS  PubMed  Google Scholar 

  21. Maduro JH, Noordhuis MG, ten Hoor KA, Pras E, Arts HJ, Eijsink JJ, Hollema H, Mom CH, de Jong S, de Vries EG et al (2009) The prognostic value of TRAIL and its death receptors in cervical cancer. Int J Radiat Oncol Biol Phys 75:203–211

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Jin X, Li J, Jin X, Yu J, Sun X, Chu Y, Xu C, Li X, Wang X et al (2012) Expression of TRAIL, DR4, and DR5 in bladder cancer: correlation with response to adjuvant therapy and implications of prognosis. Urology 79:968.e7–968.15

    Google Scholar 

  23. Gallmeier E, Bader DC, Kriegl L, Berezowska S, Seeliger H, Göke B, Kirchner T, Bruns C, De Toni EN (2013) Loss of TRAIL-receptors is a recurrent feature in pancreatic cancer and determines the prognosis of patients with no nodal metastasis after surgery. PLoS One 8:e56760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ganten TM, Sykora J, Koschny R, Batke E, Aulmann S, Mansmann U, Stremmel W, Sinn HP, Walczak H (2009) Prognostic significance of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor expression in patients with breast cancer. J Mol Med (Berl) 87:995–1007

    Article  CAS  Google Scholar 

  25. Sanlioglu AD, Korcum AF, Pestereli E, Erdogan G, Karaveli S, Savas B, Griffith TS, Sanlioglu S (2007) TRAIL death receptor-4 expression positively correlates with the tumor grade in breast cancer patients with invasive ductal carcinoma. Int J Radiat Oncol Biol Phys 69:716–723

    Article  CAS  PubMed  Google Scholar 

  26. Zhang XD, Franco AV, Nguyen T, Gray CP, Hersey P (2000) Differential localization and regulation of death and decoy receptors for TNF-related apoptosis-inducing ligand (TRAIL) in human melanoma cells. J Immunol 164:3961–3970

    Article  CAS  PubMed  Google Scholar 

  27. Haselmann V, Kurz A, Bertsch U, Hübner S, Olempska-Müller M, Fritsch J, Häsler R, Pickl A, Fritsche H, Annewanter F et al (2014) Nuclear death receptor TRAIL-R2 inhibits maturation of let-7 and promotes proliferation of pancreatic and other tumor cells. Gastroenterology 146:278–290

    Article  CAS  PubMed  Google Scholar 

  28. Kojima Y, Nakayama M, Nishina T, Nakano H, Koyanagi M, Takeda K, Okumura K, Yagita H (2011) Importin β1 protein-mediated nuclear localization of death receptor 5 (DR5) limits DR5/tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced cell death of human tumor cells. J Biol Chem 286:43383–43393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reis CR, Chen PH, Bendris N, Schmid SL (2017) TRAIL-death receptor endocytosis and apoptosis are selectively regulated by dynamin-1 activation. Proc Natl Acad Sci U S A 114:504–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen JJ, Shen HC, Rivera Rosado LA, Zhang Y, Di X, Zhang B (2012) Mislocalization of death receptors correlates with cellular resistance to their cognate ligands in human breast cancer cells. Oncotarget 3:833–842

    PubMed  PubMed Central  Google Scholar 

  31. Di X, Zhang G, Zhang Y, Takeda K, Rivera Rosado LA, Zhang B (2013) Accumulation of autophagosomes in breast cancer cells induces TRAIL resistance through downregulation of surface expression of death receptors 4 and 5. Oncotarget 4:1349–1364

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dufour F, Rattier T, Constantinescu AA, Zischler L, Morlé A, Ben Mabrouk H, Humblin E, Jacquemin G, Szegezdi E, Delacote F, Marrakchi N, Guichard G, Pellat-Deceunynck C, Vacher P, Legembre P, Garrido C, Micheau O (2017) TRAIL receptor gene editing unveils TRAIL-R1 as a master player of apoptosis induced by TRAIL and ER stress. Oncotarget 8:9974–9985

    Article  PubMed  Google Scholar 

  33. Lu M, Lawrence DA, Marsters S, Acosta-Alvear D, Kimmig P, Mendez AS, Paton AW, Paton JC, Walter P, Ashkenazi A (2014) Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science 345:98–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A et al (eds) (1975–2014) SEER cancer statistics review. National Cancer Institute, Bethesda https://seer.cancer.gov/csr/1975_2014/, based on November 2016 SEER data submission, posted to the SEER web site, April 2017

  35. Fritsche H, Heilmann T, Tower RJ, Hauser C, von Au A, El-Sheikh D, Campbell GM, Alp G, Schewe D, Hübner S et al (2015) TRAIL-R2 promotes skeletal metastasis in a breast cancer xenograft mouse model. Oncotarget 6:9502–9516

    PubMed  PubMed Central  Google Scholar 

  36. McCarthy MM, Sznol M, DiVito KA, Camp RL, Rimm DL, Kluger HM (2005) Evaluating the expression and prognostic value of TRAIL-R1 and TRAIL-R2 in breast cancer. Clin Cancer Res 11:5188–5194

    Article  CAS  PubMed  Google Scholar 

  37. Alkatout I, Wiedermann M, Bauer M, Wenners A, Jonat W, Klapper W (2013) Transcription factors associated with epithelial-mesenchymal transition and cancer stem cells in the tumor centre and margin of invasive breast cancer. Exp Mol Pathol 94:168–173

    Article  CAS  PubMed  Google Scholar 

  38. IBM (2013) IBM SPSS Statistics (version 22.0.0.2 for Windows) [Computer software]. IBM, Armonk

    Google Scholar 

  39. Labovsky V, Martinez LM, Davies KM, de Luján Calcagno M, García-Rivello H, Wernicke A, Feldman L, Matas A, Giorello MB, Borzone FR, Choi H, Howard SC, Chasseing NA (2017) Prognostic significance of TRAIL-R3 and CCR-2 expression in tumor epithelial cells of patients with early breast cancer. BMC Cancer 17:280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oikonomou E, Kosmidou V, Katseli A, Kothonidis K, Mourtzoukou D, Kontogeorgos G, Andera L, Zografos G, Pintzas A (2009) TRAIL receptor upregulation and the implication of KRAS/BRAF mutations in human colon cancer tumors. Int J Cancer 125(9):2127–2135

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y, Yoshida T, Zhang B (2009) TRAIL induces endocytosis of its death receptors in MDA-MB-231 breast cancer cells. Cancer Biol Ther 8:917–922

    Article  CAS  PubMed  Google Scholar 

  42. Akazawa Y, Mott JL, Bronk SF, Werneburg NW, Kahraman A, Guicciardi ME, Meng XW, Kohno S, Shah VH, Kaufmann SH, McNiven MA, Gores GJ (2009) Death receptor 5 internalization is required for lysosomal permeabilization by TRAIL in malignant liver cell lines. Gastroenterology 136:2365–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365:1687–1717

    Article  CAS  Google Scholar 

  44. Hudis CA (2007) Trastuzumab-mechanism of action and use in clinical practice. N Engl J Med 357:39–51

    Article  CAS  PubMed  Google Scholar 

  45. Harbeck N (2018) Advances in targeting HER2-positive breast cancer. Curr Opin Obstet Gynecol 30:55–59

    PubMed  Google Scholar 

  46. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, Geyer CE Jr, Dees EC, Goetz MP, Olson JA Jr et al (2018) Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N Engl J Med 379:11

    Article  Google Scholar 

  47. Buus R, Sestak I, Kronenwett R, Denkert C, Dubsky P, Krappmann K, Scheer M, Petry C, Cuzick J, Dowsett M (2016) Comparison of EndoPredict and EPclin with oncotype DX recurrence score for prediction of risk of distant recurrence after endocrine therapy. J Natl Cancer Inst 10:108–111

    Google Scholar 

Download references

Acknowledgments

The antibodies for TRAIL-R1, TRAIL-R2, and TRAIL-R4 were kindly provided by Henning Walczak, UCL Cancer Institute, London.

Funding

This work was supported by the Deutsche Forschungsgemeinschaft (TR 1063/3-1 given to AT) and the German Cancer Aid (Max Eder Junior Research Group funding awarded to SvK).

Author information

Authors and Affiliations

Authors

Contributions

TH, CS, and AT designed the study, analyzed the data, and wrote the manuscript. FV, SK, and CR performed the tissue staining and histological examination and established the TRAIL-receptor scoring system. CB and SS conducted statistical computations and preparation of the figures. IA, AW, MB, and WK established the breast cancer patients’ tissue microarray and participated in the design of the study. NM and SvK participated in the conception and writing of the manuscript and data analyses.

All authors read and approved the manuscript.

Corresponding author

Correspondence to Anna Trauzold.

Ethics declarations

This study was conducted with the approval of the local ethics committee (Faculty of Medicine, Christian-Albrechts-University Kiel, Germany; #D450/10).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Thorsten Heilmann and Florian Vondung share co-first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heilmann, T., Vondung, F., Borzikowsky, C. et al. Heterogeneous intracellular TRAIL-receptor distribution predicts poor outcome in breast cancer patients. J Mol Med 97, 1155–1167 (2019). https://doi.org/10.1007/s00109-019-01805-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01805-w

Keywords

Navigation