Skip to main content
Log in

Restoration of mucosal integrity and epithelial transport function by concomitant anti-TNFα treatment in chronic DSS-induced colitis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Impaired salt and water absorption is a hallmark of diarrhea in IBD. In the present study, the therapeutic effect of continuous anti-TNFα treatment on the progression of inflammation and colonic transport dysfunction during chronic dextran sulfate sodium (DSS)-induced colitis was investigated. Chronic colitis was induced by three DSS exposure cycles. Mice received TNFα monoclonal antibody treatment twice weekly after the end of the first 5-day DSS drinking period. Mice developed chronic DSS-induced colitis characterized by a typical immune cell infiltration composed of CD3+ T cells and CD68+ macrophages, both expressing high levels of the pro-inflammatory cytokines IL-1β and TNFα, a loss of NHE3 and PDZK1 in the brush border region of the absorptive enterocyte and a decrease of colonic fluid absorption in vivo, measured by colonic single pass perfusion. Concomitant anti-TNFα treatment resulted in a significant reduction of mucosal immune cell infiltration and expression of the pro-inflammatory cytokines IL-1β and TNFα. It also resulted in a normalization of NHE3-mediated fluid absorption and a restoration of NHE3 and PDZK1 location in the apical and subapical region of the enterocytes. Here, we show for the first time that in this chemically induced murine colitis model, anti-TNFα treatment significantly decreased inflammatory activity, improved mucosal integrity and restored transport function despite an ongoing inflammatory insult. Anti-TNFα treatment may therefore be beneficial in patients with IBD even in spite of an absence of complete mucosal healing.

Key messages

  • Chronic DSS treatment caused a loss of NHE3 and PDZK1 in the brush border region of the absorptive enterocyte and decreases colonic fluid absorption.

  • In DSS-induced colitis, anti-TNFα treatment reduced mucosal immune cell infiltration and expression of the pro-inflammatory cytokines IL-1β and TNFα.

  • In DSS-induced colitis, anti-TNFα treatment normalized NHE3-mediated fluid absorption and restored NHE3 and PDZK1 location in the enterocytes.

  • In DSS-induced colitis, anti-TNFα treatment decreased inflammatory activity, improved mucosal integrity, and restored transport function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DSS:

Dextran sulfate sodium

IBD:

Inflammatory bowel disease

iNOS:

Inducible nitric oxide synthase

IL-1ß:

Interleukin-1 beta

NHE3:

Na+/H+ exchanger isoform 3

PDZK1:

PDZ domain-containing 1

TNFα:

Tumor necrosis factor alpha

References

  1. de Souza HS, Fiocchi C (2016) Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol 13(1):13–27

    Article  PubMed  CAS  Google Scholar 

  2. Neurath MF (2014) Cytokines in inflammatory bowel disease. Nat Rev Immunol 14(5):329–342

    Article  PubMed  CAS  Google Scholar 

  3. Neurath MF (2017) Current and emerging therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol 14(5):269–278

    Article  PubMed  CAS  Google Scholar 

  4. Geboes K, Rutgeerts P, Opdenakker G, Olson A, Patel K, Wagner CL, Marano CW (2005) Endoscopic and histologic evidence of persistent mucosal healing and correlation with clinical improvement following sustained infliximab treatment for Crohn’s disease. Curr Med Res Opin 21(11):1741–1754

    Article  PubMed  CAS  Google Scholar 

  5. Moss AC (2014) The meaning of low-grade inflammation in clinically quiescent inflammatory bowel disease. Curr Opin Gastroenterol 30(4):365–369

    Article  PubMed  CAS  Google Scholar 

  6. Field M (2003) Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest 111(7):931–943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Gareau MG, Barrett KE (2013) Fluid and electrolyte secretion in the inflamed gut: novel targets for treatment of inflammation-induced diarrhea. Curr Opin Pharmacol 13(6):895–899

    Article  PubMed  CAS  Google Scholar 

  8. Seidler U, Lenzen H, Cinar A, Tessema T, Bleich A, Riederer B (2006) Molecular mechanisms of disturbed electrolyte transport in intestinal inflammation. Ann N Y Acad Sci 1072(1):262–275

    Article  PubMed  CAS  Google Scholar 

  9. Donowitz M, Li X (2007) Regulatory binding partners and complexes of NHE3. Physiol Rev 87(3):825–872

    Article  PubMed  CAS  Google Scholar 

  10. Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR, Riddle TM, Duffy JJ, Doetschman T, Wang T, Giebisch G, Aronson PS, Lorenz JN, Shull GE (1998) Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 19(3):282–285

    Article  PubMed  CAS  Google Scholar 

  11. Lamprecht G, Seidler U (2006) The emerging role of PDZ adapter proteins for regulation of intestinal ion transport. Am J Physiol Gastrointest Liver Physiol 291(5):G766–G777

    Article  PubMed  CAS  Google Scholar 

  12. Seidler U, Singh A, Chen M, Cinar A, Bachmann O, Zheng W, Wang J, Yeruva S, Riederer B (2009) Knockout mouse models for intestinal electrolyte transporters and regulatory PDZ adaptors: new insights into cystic fibrosis, secretory diarrhoea and fructose-induced hypertension. Exp Physiol 94(2):175–179

    Article  PubMed  CAS  Google Scholar 

  13. Seidler U, Singh AK, Cinar A, Chen M, Hillesheim J, Hogema B, Riederer B (2009) The role of the NHERF family of PDZ scaffolding proteins in the regulation of salt and water transport. Ann N Y Acad Sci 1165(1):249–260

    Article  PubMed  CAS  Google Scholar 

  14. Lenzen H, Lünnemann M, Bleich A, Manns MP, Seidler U, Jörns A (2012) Downregulation of the NHE3-binding PDZ-adaptor protein PDZK1 expression during cytokine-induced inflammation in interleukin-10-deficient mice. PLoS One 7(7):e40657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yeruva S, Farkas K, Hubricht J, Rode K, Riederer B, Bachmann O, Cinar A, Rakonczay Z, Molnar T, Nagy F et al (2010) Preserved Na(+)/H(+) exchanger isoform 3 expression and localization, but decreased NHE3 function indicate regulatory sodium transport defect in ulcerative colitis. Inflamm Bowel Dis 16(7):1149–1161

    Article  PubMed  Google Scholar 

  16. Farkas K, Yeruva S, Rakonczay Z Jr, Ludolph L, Molnar T, Nagy F, Szepes Z, Schnur A, Wittmann T, Hubricht J et al (2011) New therapeutic targets in ulcerative colitis: the importance of ion transporters in the human colon. Inflamm Bowel Dis 17(4):884–898

    Article  PubMed  Google Scholar 

  17. Yeruva S, Chodisetti G, Luo M, Chen M, Cinar A, Ludolph L, Lünnemann M, Goldstein J, Singh AK, Riederer B, Bachmann O, Bleich A, Gereke M, Bruder D, Hagen S, He P, Yun C, Seidler U (2015) Evidence for a causal link between adaptor protein PDZK1 downregulation and Na(+)/H(+) exchanger NHE3 dysfunction in human and murine colitis. Pflügers Arch 467(8):1795–1807

    Article  PubMed  CAS  Google Scholar 

  18. Luo M, Yeruva S, Liu Y, Chodisetti G, Riederer B, Menon MB, Tachibana K, Doi T, Seidler UE (2017) IL-1beta-induced downregulation of the multifunctional PDZ adaptor PDZK1 is attenuated by ERK inhibition, RXRalpha, or PPARalpha stimulation in enterocytes. Front Physiol 8(1):61

    PubMed  PubMed Central  Google Scholar 

  19. Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M (2014) Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 104(1):Unit-15.25

    PubMed  PubMed Central  Google Scholar 

  20. Cooper HS, Murthy SN, Shah RS, Sedergran DJ (1993) Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Investig 69(2):238–249

    PubMed  CAS  Google Scholar 

  21. Eichele DD, Kharbanda KK (2017) Dextran sodium sulfate colitis murine model: an indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol 23(33):6016–6029

    Article  PubMed  PubMed Central  Google Scholar 

  22. Whittem CG, Williams AD, Williams CS (2010) Murine colitis modeling using dextran sulfate sodium (DSS). J Vis Exp. https://doi.org/10.3791/1652

  23. Wirtz S, Popp V, Kindermann M, Gerlach K, Weigmann B, Fichtner-Feigl S, Neurath MF (2017) Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc 12(7):1295–1309

    Article  PubMed  CAS  Google Scholar 

  24. Berg DJ, Davidson N, Kuhn R, Muller W, Menon S, Holland G, Thompson-Snipes L, Leach MW, Rennick D (1996) Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Invest 98(4):1010–1020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Arndt T, Wedekind D, Weiss H, Tiedge M, Lenzen S, Hedrich HJ, Jörns A (2009) Prevention of spontaneous immune-mediated diabetes development in the LEW.1AR1-iddm rat by selective CD8+ T cell transfer is associated with a cytokine shift in the pancreas-draining lymph nodes. Diabetologia 52(7):1381–1390

    Article  PubMed  CAS  Google Scholar 

  26. Xia W, Yu Q, Riederer B, Singh AK, Engelhardt R, Yeruva S, Song P, Tian DA, Soleiman M, Seidler U (2014) The distinct roles of anion transporters Slc26a3 (DRA) and Slc26a6 (PAT-1) in fluid and electrolyte absorption in the murine small intestine. Pflügers Arch 466(8):1541–1556

    Article  PubMed  CAS  Google Scholar 

  27. Sjöblom M, Nylander O (2007) Isoflurane-induced acidosis depresses basal and PGE(2)-stimulated duodenal bicarbonate secretion in mice. Am J Physiol Gastrointest Liver Physiol 292(3):G899–G904

    Article  PubMed  CAS  Google Scholar 

  28. Turnberg LA, Bieberdorf FA, Morawski SG, Fordtran JS (1970) Interrelationships of chloride, bicarbonate, sodium, and hydrogen transport in the human ileum. J Clin Invest 49(3):557–567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chen M, Sultan A, Cinar A, Yeruva S, Riederer B, Singh AK, Li J, Bonhagen J, Chen G, Yun C, Donowitz M, Hogema B, deJonge H, Seidler U (2010) Loss of PDZ-adaptor protein NHERF2 affects membrane localization and cGMP- and [Ca2+]- but not cAMP-dependent regulation of Na+/H+ exchanger 3 in murine intestine. J Physiol 588(24):5049–5063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hegan PS, Giral H, Levi M, Mooseker MS (2012) Myosin VI is required for maintenance of brush border structure, composition, and membrane trafficking functions in the intestinal epithelial cell. Cytoskeleton 69(4):235–251

    Article  PubMed  CAS  Google Scholar 

  31. Chen T, Hubbard A, Murtazina R, Price J, Yang J, Cha B, Sarker R, Donowitz M (2014) Myosin VI mediates the movement of NHE3 down the microvillus in intestinal epithelial cells. J Cell Sci 127(16):3535–3545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Peyrin-Biroulet L, Lemann M (2011) Review article: remission rates achievable by current therapies for inflammatory bowel disease. Aliment Pharmacol Ther 33(8):870–879

    Article  PubMed  CAS  Google Scholar 

  33. Peyrin-Biroulet L, Reinisch W, Colombel JF, Mantzaris GJ, Kornbluth A, Diamond R, Rutgeerts P, Tang LK, Cornillie FJ, Sandborn WJ (2014) Clinical disease activity, C-reactive protein normalisation and mucosal healing in Crohn’s disease in the SONIC trial. Gut 63(1):88–95

    Article  PubMed  Google Scholar 

  34. Sandle GI, Hayslett JP, Binder HJ (1986) Effect of glucocorticoids on rectal transport in normal subjects and patients with ulcerative colitis. Gut 27(3):309–316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Bergann T, Zeissig S, Fromm A, Richter JF, Fromm M, Schulzke JD (2009) Glucocorticoids and tumor necrosis factor-alpha synergize to induce absorption by the epithelial sodium channel in the colon. Gastroenterology 136(3):933–942

    Article  PubMed  CAS  Google Scholar 

  36. Oprins JC, Meijer HP, Groot JA (2000) Tumor necrosis factor-alpha potentiates ion secretion induced by muscarinic receptor activation in the human intestinal epithelial cell line HT29cl.19A. Ann N Y Acad Sci 915(3):102–106

    PubMed  CAS  Google Scholar 

  37. Hering NA, Fromm M, Schulzke JD (2012) Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J Physiol 590(5):1035–1044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27(1):519–550

    Article  PubMed  CAS  Google Scholar 

  39. Gill RK, Saksena S, Syed IA, Tyagi S, Alrefai WA, Malakooti J, Ramaswamy K, Dudeja PK (2002) Regulation of NHE3 by nitric oxide in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 283(3):G747–G756

    Article  PubMed  CAS  Google Scholar 

  40. Jörns A, Ertekin UG, Arndt T, Terbish T, Wedekind D, Lenzen S (2015) TNF-alpha antibody therapy in combination with the T-cell-specific antibody anti-TCR reverses the diabetic metabolic state in the LEW.1AR1-iddm rat. Diabetes 64(8):2880–2891

    Article  PubMed  CAS  Google Scholar 

  41. Siddique I, Hasan F, Khan I (2009) Suppression of Na+/H+ exchanger isoform-3 in human inflammatory bowel disease: lack of reversal by 5′-aminosalicylate treatment. Scand J Gastroenterol 44(1):56–64

    Article  PubMed  CAS  Google Scholar 

  42. Sullivan S, Alex P, Dassopoulos T, Zachos NC, Iacobuzio-Donahue C, Donowitz M, Brant SR, Cuffari C, Harris ML, Datta LW, Conklin L, Chen Y, Li X (2009) Downregulation of sodium transporters and NHERF proteins in IBD patients and mouse colitis models: potential contributors to IBD-associated diarrhea. Inflamm Bowel Dis 15(2):261–274

    Article  PubMed  PubMed Central  Google Scholar 

  43. Turnberg LA, Fordtran JS, Carter NW, Rector FC Jr (1970) Mechanism of bicarbonate absorption and its relationship to sodium transport in the human jejunum. J Clin Invest 49(3):548–556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lohi H, Makela S, Pulkkinen K, Hoglund P, Karjalainen-Lindsberg ML, Puolakkainen P, Kere J (2002) Upregulation of CFTR expression but not SLC26A3 and SLC9A3 in ulcerative colitis. Am J Physiol Gastrointest Liver Physiol 283(3):G567–G575

    Article  PubMed  CAS  Google Scholar 

  45. Yang H, Jiang W, Furth EE, Wen X, Katz JP, Sellon RK, Silberg DG, Antalis TM, Schweinfest CW, Wu GD (1998) Intestinal inflammation reduces expression of DRA, a transporter responsible for congenital chloride diarrhea. Am J Phys 275(6 Pt 1):G1445–G1453

    CAS  Google Scholar 

  46. Xiao F, Juric M, Li J, Riederer B, Yeruva S, Singh AK, Zheng L, Glage S, Kollias G, Dudeja P, Tian DA, Xu G, Zhu J, Bachmann O, Seidler U (2012) Loss of downregulated in adenoma (DRA) impairs mucosal HCO3(−) secretion in murine ileocolonic inflammation. Inflamm Bowel Dis 18(1):101–111

    Article  PubMed  Google Scholar 

  47. Juric M, Xiao F, Amasheh S, May O, Wahl K, Bantel H, Manns MP, Seidler U, Bachmann O (2013) Increased epithelial permeability is the primary cause for bicarbonate loss in inflamed murine colon. Inflamm Bowel Dis 19(5):904–911

    Article  PubMed  Google Scholar 

  48. Hillesheim J, Riederer B, Tuo B, Chen M, Manns M, Biber J, Yun C, Kocher O, Seidler U (2007) Down regulation of small intestinal ion transport in PDZK1- (CAP70/NHERF3) deficient mice. Pflügers Arch 454(4):575–586

    Article  PubMed  CAS  Google Scholar 

  49. Zachos NC, Li X, Kovbasnjuk O, Hogema B, Sarker R, Lee LJ, Li M, de Jonge H, Donowitz M (2009) NHERF3 (PDZK1) contributes to basal and calcium inhibition of NHE3 activity in Caco-2BBe cells. J Biol Chem 284(35):23708–23718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Cinar A, Chen M, Riederer B, Bachmann O, Wiemann M, Manns M, Kocher O, Seidler U (2007) NHE3 inhibition by cAMP and Ca2+ is abolished in PDZ-domain protein PDZK1-deficient murine enterocytes. J Physiol 581(3):1235–1246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kato Y, Sai Y, Yoshida K, Watanabe C, Hirata T, Tsuji A (2005) PDZK1 directly regulates the function of organic cation/carnitine transporter OCTN2. Mol Pharmacol 67(3):734–743

    Article  PubMed  CAS  Google Scholar 

  52. Kocher O, Comella N, Gilchrist A, Pal R, Tognazzi K, Brown LF, Knoll JH (1999) PDZK1, a novel PDZ domain-containing protein up-regulated in carcinomas and mapped to chromosome 1q21, interacts with cMOAT (MRP2), the multidrug resistance-associated protein. Lab Investig 79(9):1161–1170

    PubMed  CAS  Google Scholar 

  53. Sugiura T, Shimizu T, Kijima A, Minakata S, Kato Y (2011) PDZ adaptors: their regulation of epithelial transporters and involvement in human diseases. J Pharm Sci 100(9):3620–3635

    Article  PubMed  CAS  Google Scholar 

  54. LaLonde DP, Garbett D, Bretscher A (2010) A regulated complex of the scaffolding proteins PDZK1 and EBP50 with ezrin contribute to microvillar organization. Mol Biol Cell 21(9):1519–1529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Malmberg EK, Pelaseyed T, Petersson AC, Seidler UE, De Jonge H, Riordan JR, Hansson GC (2008) The C-terminus of the transmembrane mucin MUC17 binds to the scaffold protein PDZK1 that stably localizes it to the enterocyte apical membrane in the small intestine. Biochem J 410(2):283–289

    Article  PubMed  CAS  Google Scholar 

  56. Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GM, Schutte A, van der Post S, Svensson F, Rodriguez-Pineiro AM, Nyström EE et al (2014) The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 260(1):8–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Martin L, Koczera P, Zechendorf E, Schuerholz T (2016) The endothelial glycocalyx: new diagnostic and therapeutic approaches in sepsis. Biomed Res Int 2016(2016):3758278

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Brigitte Riederer for fruitful discussions and valuable advice. The excellent technical assistance of D. Lischke and R. Strauss is gratefully acknowledged.

Source of funding

This work has been supported in part by funding from the “Ellen-Schmidt-Habilitation” program of the Equal Opportunities Office of the Hannover Medical School (to H.L.), grants from the German Research Council (SE460/19-1 and 21-1 to U.S.) and (JO395/2-2 to A.J.) and a grant from the Lower Saxony Ministry of Science and Culture (VW-Vorab to U.S.).

Author information

Authors and Affiliations

Authors

Contributions

HL, US, and AJ were involved in the design of the study, acquisition, and interpretation of data and drafting the article. JQ was involved in acquisition and analysis of data and revising the article critically for important intellectual content. MPM provided key support in interpretation of data and revising the article for important intellectual content.

Corresponding author

Correspondence to Henrike Lenzen.

Ethics declarations

All animal experiments were performed according to the national and institutional guidelines and were approved by the Local Institutional Animal Care and Research Advisory Committee at the Hannover Medical School and authorized by the local government for the regulation of animal welfare (Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit, LAVES, No 33.12-42502-04-14/1641).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Figure 1

Time course of the experiments, showing the three DSS cycles and anti-TNFα treatment. Control and DSS-treated mice received a corresponding number of IgG i.p. injections of an identical volume (100 μL) instead of anti-TNFα injections. (PNG 85 kb)

High resolution image (TIF 871 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenzen, H., Qian, J., Manns, M.P. et al. Restoration of mucosal integrity and epithelial transport function by concomitant anti-TNFα treatment in chronic DSS-induced colitis. J Mol Med 96, 831–843 (2018). https://doi.org/10.1007/s00109-018-1658-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-018-1658-1

Keywords

Navigation