Skip to main content

Advertisement

Log in

HIF-P4H-2 deficiency protects against skeletal muscle ischemia-reperfusion injury

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

We show here that mice hypomorphic for hypoxia-inducible factor prolyl 4-hydroxylase-2 (HIF-P4H-2) (Hif-p4h-2 gt/gt), the main regulator of the stability of the HIFα subunits, have normoxic stabilization of HIF-1α and HIF-2α in their skeletal muscles. The size of the capillaries, but not their number, was increased in the skeletal muscles of the Hif-p4h-2 gt/gt mice, whereas the amount of glycogen was reduced. The expression levels of genes for glycolytic enzymes, glycogen branching enzyme 1 and monocarboxylate transporter 4, were increased in the Hif-p4h-2 gt/gt skeletal muscles, whereas no significant increases were detected in the levels of any vasculature-influencing factor studied. Serum lactate levels of the Hif-p4h-2 gt/gt mice recovered faster than those of the wild type following exercise. The Hif-p4h-2 gt/gt mice had elevated hepatic phosphoenolpyruvate carboxykinase activity, which may have contributed to the faster clearance of lactate. The Hif-p4h-2 gt/gt mice had smaller infarct size following limb ischemia-reperfusion injury. The increased capillary size correlated with the reduced infarct size. Following ischemia-reperfusion, glycogen content and ATP/ADP and CrP/Cr levels of the skeletal muscle of the Hif-p4h-2 gt/gt mice were higher than in the wild type. The higher glycogen content correlated with increased expression of phosphofructokinase messenger RNA (mRNA) and the increased ATP/ADP and CrP/Cr levels with reduced apoptosis, suggesting that HIF-P4H-2 deficiency supported energy metabolism during ischemia-reperfusion and protection against injury.

Key messages

  • HIF-P4H-2 deficiency protects skeletal muscle from ischemia-reperfusion injury.

  • The mechanisms involved are mediated via normoxic HIF-1α and HIF-2α stabilization.

  • HIF-P4H-2 deficiency increases capillary size but not number.

  • HIF-P4H-2 deficiency maintains energy metabolism during ischemia-reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402

    Article  CAS  PubMed  Google Scholar 

  2. Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Myllyharju J, Koivunen P (2013) Hypoxia-inducible factor prolyl 4-hydroxylases: common and specific roles. Biol Chem 394:435–448

    Article  CAS  PubMed  Google Scholar 

  4. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A et al (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54

    Article  CAS  PubMed  Google Scholar 

  5. Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340

    Article  CAS  PubMed  Google Scholar 

  6. Ivan M, Haberberger T, Gervasi DC, Michelson KS, Günzler V, Kondo K, Yang H, Sorokina I, Conaway RC, Conaway JW et al (2002) Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Natl Acad Sci U S A 99:13459–13464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lendahl U, Lee KL, Yang H, Poellinger L (2009) Generating specificity and diversity in the transcriptional response to hypoxia. Nat Rev Genet 10:821–832

    Article  CAS  PubMed  Google Scholar 

  8. Takeda K, Ho V, Takeda H, Duan LJ, Nagy A, Fong GH (2006) Placental but not heart defect is associated with elevated HIFα levels in mice lacking prolyl hydroxylase domain protein 2. Mol Cell Biol 26:8336–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takeda K, Cowan A, Fong GH (2007) Essential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular system. Circulation 116:774–781

    Article  CAS  PubMed  Google Scholar 

  10. Minamishima YA, Moslehi J, Bardeesy N, Cullen D, Bronson RT, Kaelin WG Jr (2008) Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood 111:3236–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bao W, Qin P, Needle S, Erickson-Miller CL, Duffy KJ, Ariazi JL, Zhao S, Olzinski AR, Behm DJ, Pipes GC et al (2010) Chronic inhibition of hypoxia-inducible factor prolyl 4-hydroxylase improves ventricular performance, remodeling, and vascularity after myocardial infarction in the rat. J Cardiovasc Pharmacol 56:147–155

    Article  CAS  PubMed  Google Scholar 

  12. Cai Z, Zhong H, Bosch-Marce M, Fox-Talbot K, Wang L, Wei C, Trush MA, Semenza GL (2008) Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1α. Cardiovasc Res 77:463–470

    Article  CAS  PubMed  Google Scholar 

  13. Eckle T, Köhler D, Lehmann R, El Kasmi K, Eltzschig HK (2008) Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning. Circulation 118:166–175

    Article  CAS  PubMed  Google Scholar 

  14. Huang M, Chan DA, Jia F, Xie X, Li Z, Hoyt G, Robbins RC, Chen X, Giaccia AJ, Wu JC (2008) Short hairpin RNA interference therapy for ischemic heart disease. Circulation 118:S226–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hyvärinen J, Hassinen IE, Sormunen R, Mäki JM, Kivirikko KI, Koivunen P, Myllyharju J (2010) Hearts of hypoxia-inducible factor prolyl 4-hydroxylase-2 hypomorphic mice show protection against acute ischemia-reperfusion injury. J Biol Chem 285:13646–13657

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hölscher M, Silter M, Krull S, von Ahlen M, Hesse A, Schwartz P, Wielockx B, Breier G, Katschinski DM, Zieseniss A (2011) Cardiomyocyte-specific prolyl-4-hydroxylase domain 2 knock out protects from acute myocardial ischemic injury. J Biol Chem 286:11185–11194

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kerkelä R, Karsikas S, Szabo Z, Serpi R, Magga J, Gao E, Alitalo K, Anisimov A, Sormunen R, Pietilä I et al (2013) Activation of hypoxia response in endothelial cells contributes to ischemic cardioprotection. Mol Cell Biol 33:3321–3329

    Article  PubMed  PubMed Central  Google Scholar 

  18. Aragonés J, Schneider M, Van Geyte K, Fraisl P, Dresselaers T, Mazzone M, Dirkx R, Zacchigna S, Lemieux H, Jeoung NH et al (2008) Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat Genet 40:170–180

    Article  PubMed  Google Scholar 

  19. Rey S, Lee K, Wang CJ, Gupta K, Chen S, McMillan A, Bhise N, Levchenko A, Semenza GL (2009) Synergistic effect of HIF-1α gene therapy and HIF-1-activated bone marrow-derived angiogenic cells in a mouse model of limb ischemia. Proc Natl Acad Sci U S A 106:20399–20404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Patel TH, Kimura H, Weiss CR, Semenza GL, Hofmann LV (2005) Constitutively active HIF-1α improves perfusion and arterial remodeling in an endovascular model of limb ischemia. Cardiovasc Res 68:144–154

    Article  CAS  PubMed  Google Scholar 

  21. Niemi H, Honkonen K, Korpisalo P, Huusko J, Kansanen E, Merentie M, Rissanen TT, Andre H, Pereira T, Poellinger L et al (2014) HIF-1α and HIF-2α induce angiogenesis and improve muscle energy recovery. Eur J Clin Investig 44:989–999

    Article  CAS  Google Scholar 

  22. Lijkwan MA, Hellingman AA, Bos EJ, van der Bogt KE, Huang M, Kooreman NG, de Vries MR, Peters HA, Robbins RC, Hamming JF et al (2014) Short hairpin RNA gene silencing of prolyl hydroxylase-2 with a minicircle vector improves neovascularization of hindlimb ischemia. Hum Gene Ther 25:41–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takeda Y, Costa S, Delamarre E, Roncal C, Leite de Oliveira R, Squadrito ML, Finisguerra V, Deschoemaeker S, Bruyère F, Wenes M et al (2011) Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature 479:122–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. HoWangYin KY, Loinard C, Bakker W, Guérin CL, Vilar J, D’Audigier C, Mauge L, Bruneval P, Emmerich J, Lévy BI et al (2014) HIF-prolyl hydroxylase 2 inhibition enhances the efficiency of mesenchymal stem cell-based therapies for the treatment of critical limb ischemia. Stem Cells 32:231–243

    Article  PubMed  Google Scholar 

  25. Olson E, Demopoulos L, Haws TF, Hu E, Fang Z, Mahar KM, Qin P, Lepore J, Bauer TA, Hiatt WR (2014) Short-term treatment with a novel HIF-prolyl hydroxylase inhibitor (GSK1278863) failed to improve measures of performance in subjects with claudication-limited peripheral artery disease. Vasc Med 19:473–482

    Article  CAS  PubMed  Google Scholar 

  26. Seubert W, Huth W (1965) On the mechanism of gluconeogenesis and its regulation. II. The mechanism of gluconeogenesis from pyruvate and fumarate. Biochem Z 343:176–191

    CAS  PubMed  Google Scholar 

  27. Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 24:97–106

    Article  CAS  Google Scholar 

  28. Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122

    Article  CAS  PubMed  Google Scholar 

  29. Rahtu-Korpela L, Karsikas S, Hörkkö S, Blanco Sequeiros R, Lammentausta E, Mäkelä KA, Herzig KH, Walkinshaw G, Kivirikko KI, Myllyharju J et al (2014) HIF prolyl 4-hydroxylase-2 inhibition improves glucose and lipid metabolism and protects against obesity and metabolic dysfunction. Diabetes 63:3324–3333

    Article  CAS  PubMed  Google Scholar 

  30. Ullah MS, Davies AJ, Halestrap AP (2006) The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism. J Biol Chem 281:9030–9037

    Article  CAS  PubMed  Google Scholar 

  31. Ren JM, Gulve EA, Cartee GD, Holloszy JO (1992) Hypoxia causes glycogenolysis without an increase in percent phosphorylase a in rat skeletal muscle. Am J Physiol 263:E1086–91

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank T. Aatsinki, R. Juntunen, A. Kokko, E. Lehtimäki, M. Siurua, the personnel of the Biocenter Oulu EM Core Facility co-funded by the University of Oulu and Biocenter Finland, and the University of Oulu Laboratory Animal Centre for their excellent technical assistance. This work was supported by Academy of Finland grants 120156, 140765, 218129, and 266719 to P.K., Academy of Finland grants 200471 and 202469 and Center of Excellence 2012–2017 grant 251314 to J.M.; grants from the S. Jusélius Foundation to P.K. and J.M.; a grant from the Emil Aaltonen Foundation to P.K.; grants from the Jane and Aatos Erkko Foundation to P.K. and J.M.; and a grant from FibroGen, Inc. to J.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peppi Koivunen.

Ethics declarations

Conflict of interest

K.I.K. is a scientific founder and consultant of FibroGen, Inc., which develops HIF-P4H inhibitors as potential therapeutics. K.I.K. and J.M. own equity in this company, and the company has sponsored research in the laboratory headed by K.I.K. and currently supports research headed by J.M. No other potential conflicts of interest relevant to this article were reported.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 243 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karsikas, S., Myllymäki, M., Heikkilä, M. et al. HIF-P4H-2 deficiency protects against skeletal muscle ischemia-reperfusion injury. J Mol Med 94, 301–310 (2016). https://doi.org/10.1007/s00109-015-1349-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1349-0

Keywords

Navigation